
Chapter 8  Effects of Partial Coherence on Image 
Formation Process: A Rigorous Statistical Analysis 

 

In this chapter, a rigorous mathematical framework will be presented to illustrate 

the impact of partial coherence of light on image formation. The concepts of 

statistical optics introduced in the previous chapters will be used to facilitate the 

discussion. 

 

8.1 Preliminary Considerations 

(a) Effects of a thin transparent object on mutual coherence function 

First let us consider a thin transparent slab as shown below 

 

The time-delay suffered by the transmitted wave ( , ; ) ( , ) ( , ; )o iu x y t B x y u x y t δ= −  

is given by 
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By invoking 2( ; ) ( , ) j t
i iu P t A P t e πν−= ⋅  of narrowband light, the mutual coherence 

function behind the thin transparent slab can be calculated 
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As the quasi-monochromatic condition 1 2( ) ( ) 1cP Pδ δ τ ν− << = ∆  is fulfilled, 
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(b)  Time delays induced by a thin lens 

Refer to the following figure 
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Neglecting the constant phase term of 2 0n d
c

, then we can derive 
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(c) Focal-plane-to-focal-plane coherence relationships 

 

On the front focal plane 1 , the mutual intensity function (MIF) of an quasi-

monochromatic light reads 0 1 2 0 1 1 2 2'( ; ) '( , ; , )J Jξ ξ ξ η ξ η≡
 

, where the prime denotes 

the light field leaves the front focal plane. After propagating a distance of f, it will 

arrive at the lens. We can calculate the corresponding mutual intensity with 
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By taking 1 1( ) ( ) ~ 1χ θ χ θ≈ , 
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From equation (A) and (B), the mutual intensity after passing through the thin lens 

becomes 
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The mutual intensity on the rear focal plane is derived as 
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under paraxial conditions. Here  
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Finally, we obtain 
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which implies the mutual intensities in the front and back focal planes of a thin 

positive lens form a 4D Fourier transform pair. This relation serves as the 

foundation of Fourier optics with partially coherent light. 

Let 1 2u u u= =
  

, 2 1

1 2

1 1

2 ( )

0 1 22
1( ) ( ; ) '( ; )

( )

j u
f

f fI u J u u dS dS J e
f

π ξ ξ
λ

ξ ξ ξ ξ
λ

⋅ −

Σ Σ

= = ⋅∫ ∫
 



 

 

   . 

Note that these equations are valid as long as quasi-monochromatic conditions hold, 

i.e., 
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By use of 0 5 , 1fL L cm f m= = = , we find ( ) 2.5cl coherent length of light mm>> . 

 

(d) Object-Image Coherence Relations for a Thin Lens 



                        

Assuming the amplitude transmittance function of the lens can be expressed as 
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the mutual intensity immediately behind the lens shall be read as 
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The mutual intensity in the image plane becomes 

2 22 2
2 1 2 1

1 2

1 1

2 2 2 1 1 2
2 1 2 1

1 2

2 2

( ) ( )

1 2 1 22 2

1 1 1 2( )( ) [( ) ( ) ]
*

1 2

1( ; ) '( ; )
( ) ( )

( ) ( )

i o

o i i o i o

j u u j
z z

i o
o i

u u u uj x x j x x
z z f z z z z

x x

J u u e dS dS J e
z z

dA dA P x P x e e

π π ξ ξ
λ λ

ξ ξ

π π
λ λ

ξ ξ
λ λ

− − − −

Σ Σ

− + − − + ⋅ − + ⋅

Σ Σ

= ⋅ ⋅ ⋅∫ ∫

∫ ∫

 

 

 

   

   

 

 

 

 

, 

1 2

1 1

*
1 2 1 2 1 1 2 2( ; ) '( ; ) ( ; ) ( ; )i oJ u u dS dS J K u K uξ ξ ξ ξ ξ ξ

Σ Σ

= ⋅∫ ∫ 

   

   

, 

where 

22

2

( ) 2 ( )
( ; ) ( )

( )( )

i o
i o

u
j uz z j x

z z

o i

eK u dA P x e
z z

ξπ
π ξλ
λξ

λ λ

+
− + ⋅

Σ

= ⋅ ∫













  is the Green function, which maps a 

point source at ξ


 on 1Σ to a position u  in the image plane. 

 



8.2 Methods for Calculating Image Intensity 

In general, two methods can be exploited to deduce an image distribution using a 

partially coherent light source. 

(a) Integration over the source 

 

I) The time-varying phasor amplitude to the right of the object can be 

expressed as '( , ; ) ( ) ( , ) ( ; )o o sA t t F A tξ α ξ ξ α α δ= −
  

   . 

The phasor amplitude from source point (αβ) and reaching the image plane (u, v) is 

given by 
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The image intensity can be expressed as 
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With a Kohler’s illumination optics, the object is illuminated by a source 

effectively at infinite distance as shown below 
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In this illumination condition, 
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II) Representation of the source with an incident mutual intensity function 

Note that under the quasi-monochromatic assumption, the image amplitude can be 

expressed as 
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Thus, to solve the imaging problem, 1 2( , )oJ ξ ξ
 

 must be determined first. 



                  

By referring to the above figure, the coherence area of the source on the lens 

is about 2
1( )c sA z Aλ= . If sA is sufficiently large, then cA is much smaller than the 

area of the lens ( lA ), i.e., 2
1( )c s lA z A Aλ= << , so 2

1( )l sA A zλ>> . In this case, we 

can view the lens as an effective source of incoherent illumination.  

The MIF just before the lens can be derived from Van Citter-Zernike 

Theorem as 
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From the equation, we can further obtain 
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  denotes the 2D FT of the source intensity distribution ( )sI α and is 

extremely narrow on x∆ since 2
1( )l sA A zλ>> . For practical purposes, 1 2'( ; )lJ x x 

can 

be viewed as a new source that is spatially incoherent with intensity distribution 

proportionally to 2
1( )cP x . 



 Invoking Van Cittert-Zernike theorem again, the MIF on the object plane 

becomes 
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where 2 1ξ ξ ξ∆ = −
  

, is independent of z1 and any aberration that may exist in the 

illumination system. If z1=z2=f  and andf s oA A A>> , then 
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(i) In the incoherent limit 

For total incoherence of the object illumination ( ) ( )o oJ Iξ δ ξ∆ = ⋅ ∆
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(ii) In the coherent limit 

From ( )o oJ Iξ∆ =
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To summarize the results, refer to a schematic diagram shown below: 

                            

For an optical element with an amplitude transmittance ( )ot u , the transmitted 
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For a sample illuminated by a source through an optical element, the MIF at the 
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In general, coherence properties of the beam can be modified when pass through an 

optical element.  
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implying a phase object located just behind an incoherent light source will not 

change the coherence of the optical beam. 

 



8.3 Image Formation is an Interferometric Process 

In this section, we will discuss an interesting concept that views image formation as 

an interferometric process. By using this concept, novel means for gathering image 

data can be developed. 

 

8.3.1 Why imaging can be viewed as an interfering process? 

Consider the mutual intensity function 1 2( , )pJ x x
 

developed on the exit pupil 1 -

plane of an optical imaging system. We can simulate the imaging function by 

placing an effective lens at the principal plane as illustrated in the following 

diagram: 
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The equation shown above indicates that the intensity on the image plane is simply 

the Fourier transform of the mutual intensity on the exit pupil. The mutual intensity 



on the exit pupil can be regarded as consisting of a multitude pairs of pinholes with 

correlation specified by 1 2'( , )pJ x x
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Note also that a light source used to illuminate the object can produce a 
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Optical aberration will introduce a spatial phase 

cos for a pinhole pair with an identical spacing 

vector but at different positions. Thus, let us use a 

pair of pinholes separated by S to gather the image 

information with an interferometric process from the two pinholes. By varying the 

spacing and orientations of pinhole pairs, the entire image can be constructed from 

the complete set of interferograms. 



8.3.2 Gathering Image Information with Interferometers 

From the above discussion, we can form an image fringe from a single pair 

of pinholes on the exit pupil plane with a spacing vector of iz 


. For an 

illuminated object 

1 2 1 1 1( , ) [ , ( )] [ ]p i o i o oJ x x x z J M x M x z J FT I        
       . 

From van Citter-Zernike Theorem, different pinhole pairs with the same spacing 

vector yield an identical pattern of fringes. Based on the concept of the Young’s 

interference experiment, the spatial frequency component ( , )U V  


of an image 

can arise from a pair of pinholes with a separation of 2 1( ) ix x x z    
    . Thus, 

the observed image intensity distribution ( )iI u


can be viewed as being built up of a 

multitude of fringes generated by all possible pairs of pinholes with the fringes’ 

amplitude and phase determined by the mutual intensity 1 2'( , )pJ x x
 

. The Fourier 

spectrum of the image ( )iI u


becomes 
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. 

That is: the image spectrum at ( , )U V  
 originates from an integration of 

1 1( , )p iJ x x z 
  

with respect to 1x


 over the pupil plane for a fixed separation iz 


. 



Therefore, adding all Young’s fringe patterns generated by all pinhole pairs of 

spacing iz 


 can form the image. 

Note *
1 2 1 2 1 2'( , ) ( ) ( ) ( , )p pJ x x P x P x J x x
       with 1( )P x



determined by the bounds 

of the exit pupil, apodization, and aberrations, results in an image spectrum of 

1

1

*
1 1 1 1( ) [ ( )] ( ) ( ) ( , )i i x i p iI FT I u dA P x P x z J x x z    



    

       

 . 
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Consider the case of an incoherently illuminated object  

                                   

From van Citter-Zernike theorem,  
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By using 1 2 1 2( , ) ( , ) ( )p o oJ x x J Mx Mx J M x  
    

, we can obtain  
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 , 

which implies that for an incoherently illuminated object and an aberration-free 

optical system, the influence of the optical system on the image spectrum at   is 

simply the autocorrelation integral of two exit pupils displaced by iz 


. 

The redundancy of the optical system (i.e., the multitude of ways a single 

spacing vector is embraced by the pupil) serves to increase S/N of the measurement 

but does not contribute new information. However, if the optical system is affected 

by aberrations, the redundancy can degrade the image quality by introducing 

different spatial phases, which will reduce the contrast of the resultant fringe. 

The concept of interferometric image formation had already been employed 

to build an optical system with an effective aperture larger than the real imaging 

lens (or mirror). One of the examples is the technique of synthetic aperture imaging. 

See for example: Sensors 2008, 8, 3903-3931: Brynmor J. Davis, Daniel L. Marks, Tyler S. 

Ralston, P. Scott Carney and Stephen A. Boppart, Interferometric Synthetic Aperture Microscopy: 

Computed Imaging for Scanned Coherent Microscopy. 

An interesting imaging modality with structured light illumination, which 

can conquer the resolution limit imposed by Abbe-Rayleigh criterion, can be found 

in Biophysical Journal 2008, 94, 4957–4970: Mats G. L. Gustafsson,Lin Shao,y Peter M. 

Carlton,y C. J. Rachel Wang,Inna N. Golubovskaya, W. Zacheus Cande, David A. Agard, and 

John W. Sedat, Three-Dimensional Resolution Doubling in Wide-Field Fluorescence Microscopy 

by Structured Illumination. 



8.4 The Speckle Effect in Coherent Imaging 

 In the experimental situation of a coherent light wave passing through a 

diffuser or reflecting from a rough object (see the diagram shown in the following), 

 

the lack of knowledge of the detailed microscopic structure of the complex object 

wave raises a need to discuss the properties of speckle in statistical terms. 

                      

The spatial distribution in a speckle pattern is sufficiently complicated to be 

described by a statistically stationary and ergodic random process. Stationarity 

requires the statistical properties of an ensemble of speckle patterns to be the same 

as those of an individual speckle pattern within the ensemble. Ergodicity requires 

the statistical properties of two spatial positions to be independent and identical to 

those of the ensemble. 



8.4.1 The origin and 1st-order statistics of speckle 

The immediate issue we met is how to depict the complex light field (such as 

speckle). We can describe the light field as 

∎ an ensemble of field distributions with the same macroscopic properties but 

differing in microscopic detail. 

This leads to a wavefront with phases reflecting individual contributions from a 

rough surface on the scale of  . 

Thus, it is appropriate to assume the wavefront to be 

∎ linearly polarized thermal light with an intensity probability density distribution 

(i.e., Rayleigh PDF) 
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The contrast of a speckle pattern can be defined as 
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. 

In this speckle pattern, 1C   implies the intensity fluctuates rather pronounced. 

 

8.4.2 Ensemble Average Coherence 

Resulting from the randomness of complex object light, we shall calculate an 

ensemble average of the mutual intensity function. 



Consider an ensemble of ideally rough surface profiles, the mutual intensity 

function of an optical field from the surface becomes 

1 2 1 1 2( , ) ( ) ( )J K I      
    

, where 1( )I 


is the ensemble-averaged intensity 

distribution across the rough object. 

                            

After propagating a distance of z=l, the resulting MIF (i.e., the spatial intensity 

correlation function ( )IC r∆ ) can be expressed as 
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8.5 Controlled Generation of Complex Light (ref: Nicholas Bender, Hasan Yılmaz, 

Yaron Bromberg, and Hui Cao, “Creating and Controlling Complex Light”, APL Photonics 4, 

110806 (2019)) 

The ability to independently control the intensity PDF and correlations of speckles 

has many potential applications. For example, they can be used as a form of ‘smart’ 

illumination in high-order ghost imaging, dynamic speckle illumination microscopy, 

super-resolution imaging, compressive sensing, and optical sectioning microscopy. 

https://aip.scitation.org/doi/pdf/10.1063/1.5132960
https://aip.scitation.org/doi/pdf/10.1063/1.5132960
https://aip.scitation.org/doi/pdf/10.1063/1.5132960


In a speckle pattern, the spatial field correlation function is defined as 
* 2( ) ( ) ( ) | ( ) |EC r E r E r r E r∆ = + ∆ . The spatial intensity correlation function is given 

by:  

*( ) ( ) ( ) ( ( ) ( ) ) 1

( ) ( )
I

L NL

C r I r I r r I r I r r

C r C r

∆ = + ∆ + ∆ −

= ∆ + ∆
 . 

Here ( )LC r∆  is known as the local correlation function, and it is related to the field 

correlation function by 2
0( ) | ( ) |L EC r C C r∆ = ∆ , where 22

0 1C I I= −  is the speckle 

contrast. ( )NLC r∆  represents the non-local correlation function.  

This paper experimentally demonstrates a method of simultaneously customizing 

the intensity PDF of speckle patterns and spatial correlations among the speckle 

grains. Various families of speckles are created by encoding high-order correlations 

into the phase front of a monochromatic laser beam with a spatial light modulator 

(SLM).  



 

 



 

Complex light speckle technique had also been applied to image highly scattering 

biological tissues. Here speckles play a carrier of information about tissue 

microstructure. An interesting overview of speckle in optical coherence 

tomography can be found in 

http://biomedicaloptics.spiedigitallibrary.org/article.aspx?articleid=1101244.  

This paper discusses the origin, statistical properties, and classification of speckle 

in OCT. The concepts of signal-carrying and signal-degrading speckle are defined 

in terms of the phase and amplitude disturbances of the sample beam. Four speckle-

reduction methods—polarization diversity, spatial compounding, frequency 

compounding, and digital signal processing—were presented to reveal the potential 

effectiveness of each method with the aid of examples. 

http://biomedicaloptics.spiedigitallibrary.org/article.aspx?articleid=1101244

