
Chapter 7 

Case Study 1 Image Retrieval 
A: Image deBlurring



The defocus phase is described by the exp[𝑖𝑖𝑖𝜋𝜋𝑘𝑘𝑧𝑧𝑧𝑧] factor.

Different Types of Image Blur
• Defocus blur

--- Depth of field effects
• Scene motion

--- Objects in the scene moving
• Camera shake

--- User moving hands



Image formation model: Convolution



Blind vs. non-blind deconvolution



Image deconvolution is ill-posed



Why is this hard?



Case study 1: Deblurring with Blind 
Deconvolution

http://groups.csail.mit.edu/graphics/CodedAperture/DeconvolutionCode.html


Probabilistic Model of Image Formation



Deconvolution with prior



Likelihood P(Y | K, X)



Image prior P(X): Use parametric model (mixture of 
Gaussians) of sharp image statistics

Blurry images have different statistics



Blur prior P(K): Positive and Sparse



The obvious thing to do: a MAP Solver

No success!



Deconvolution with prior using Variational
Bayesian approach (link to pdf paper)

https://pdfs.semanticscholar.org/e691/f7f15fb1f0653da8aa15c4ef80c1aaa07733.pdf


Deconvolution with prior using Variational
Bayesian approach (link to m-scripts)

Original code available at:
http://www.inference.phy.cam.ac.uk/jwm1003/train_ensemble.tar.gz

https://www.mathworks.com/matlabcentral/fileexchange/50722-fergus-deblur/content/code/train_ensemble_get_lambda.m
http://www.inference.phy.cam.ac.uk/jwm1003/train_ensemble.tar.gz


Preprocessing



Initialization



Inferring the kernel: multiscale method



Image Reconstruction



Case Study 1 Image Retrieval: 
B. Image Deconvolution



Case Study 1 Image Retrieval B: Image Deconvolution 

7.2  Framework of Bayes rule for image retrieval applications 

To show how to implement “Bayesian Inference” in image 

processing, specifically image deconvolution, let us consider the following 

image formation process g Hf using a shift-invariant optical system H. 

Let’s denote the object to be imaged as f and g as the image. In real 

applications, noise N and background b will be encountered during the imag 

taking process, which results in [ ]g N Hf b  .  

To retrieve f from an image g, we often implement a least-square-

minimization (lsqmin) solver for 0f    with
2

2L
Hf g   . The 

associated mathematics yields 0T TH Hf H g   and gives a solution ˆ
T

T

H g
f

H H
 . 

Unfortunately, this is an ill-posed problem because the eigenvalues of TH H

can become extremely small, thus f̂  will diverge during iteration. 

To solve the problem, we can regularize the data using some prior 

knowledge as a constraint. If image formation process is linear, the data 

regularization yields the result of Tikhonov-Miller (or Wiener) filtering. In 

the far-field imaging, 2 2 2(2 )z x yk k k     is real, implying information is 

missing outside an angular cone of spatial frequencies. If we can recover 

those missing information by using nonlinear image formation, a 

superresolution imaging may be achieved. 

For the case of linear image formation, we can obtain some prior 

knowledge from that the energy involved in an image is constant, i.e.,

2
E f constant. Thus, the lsqmin problem 0L f    with a constraint
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( )

L L
L Hf g f E     has a solution of ˆ

T

T

H g
f

H H 



, showing that   

increases, the degree of smoothing in f increases.  

To proceed further, we can construct a Maximum a Posteriori (MAP) solver 

to yield a solution by maximizing the conditional probability of ( | )P f g . 

First, we apply the Bayes Rule to rewrite 
( | ) ( )

( | )
( )

P g f P f
P f g

P g
 . Here the 

marginal probability ( )P g , which is irrespective of our knowledge about f ,  

reflects how reliable of evidence g is. 

For image retrieval, the prior knowledge about object P(f) can be 

expressed as
2

22

1
( )

2( )
L

C f m

P f e 
 

 using   as a penalty to scale the deviation 

cost of the model m (represented by a set of model parameters) from a true 

object f. Here C represents a regularization matrix. An image is usually 

recorded with a camera, which is contaminated by noise. Assume that the 

noise source follows a Poisson statistics with a likelihood probability 

 pixels on camera
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( | )
!
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e
P g f
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

   in term of [ ]i iq Hf b    (the mean number of 

photons detected at pixel i) and i iN q g  ( quantum yieldq   and ig = the 

number of photons arriving at pixel i  in a time interval). 

Based on the probabilities, we can implement a MAP solver as 

follows: First define a Lagrangian of the problem as 

2

2
pixels

log ( | ) ln( ) ( )T

i i i L
i

L P f g Hf g Hf b C f m


        and then invokes a 

nonnegative constraint on f  by expressing 2 0f e  . By using variational 

principle 0L f    with 
2

2 2 ' 2

2
pixels

( ) ln( )T

i i i L
i

L He g He b e


    , we then have 



an equation for the MAP solution. We can solve the equation for a set of 

model parameters that will maximize the posteriori probability. 

 

Case Study (TV/L2-Deconv): Formulate Image Deconvolution as a 

Constraint Minimization Problem using L2-Norm as a Distance Metric for 

Data Fidelity and Total Variation as Data Constraint 

In this case study, we will illustrate how to formulate an image 

deconvolution as a constraint minimization problem and to devise a solver to 

retrieve the object function f from a given image data g.  

2 1

2
minimize [ ]

2 L Lf
Hf g Df


  ,  

which includes the data fidelity 
2

2

2 L
Hf g


  and data constraint 

1L
Df .  

First, let us define u Df , the mathematical problem becomes  

2 1

2

,
minimize [ ]

2 L Lf u
Hf g u


   s.t. u Df . 

Next an augmented Lagrangian for the constraint minimization problem will 

be set up 
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Invoking the variational calculus algebra ( )Tf A f A   , ( ) TAf f A   , and 

( ) 2Tf Af f Af   ,  



0L f    yields  

2( | | )T T T TH f D D H g D u D         ,        (A) 

and 0L u    

( )u Df    .        (B) 

A state-of-the-art solver (alternating direction method of multipliers, 

ADMM) can be devised to provide a solution to the constraint minimization 

problem. ADMM is an algorithm that solves convex optimization problems 

by breaking them into smaller pieces: 
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Subproblem 2: 
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Subproblem 3: 1 1 1( )k k k ku Df       .  



Case Study 1 Image Retrieval C: Phase Retrieval  

7.3 Phase Information 

 The random fluctuations of the atmosphere and the mechanical 

instability of an interferometer prevent the phase information of P  at the 

exit pupil plane (the normalized version of the mutual intensity function) to 

be extracted. Thus, the question is often that can we deduce the object 

information from P alone? Let us examine the following figures: 

                .  

Note if 
2

( , )P x y is given, then  

2
( ) [ ( , ) ] ( ) ( )i P o oI u FT x y I I u dA , which can be used to 

obtain the separation of two small objects like 



            . 

If the object of interest happens to have a point source near it and separated 

at a proper distance (like a complex galaxy with a nearby point bright star) 

as depicted below, we can then extract the object information in this case. 

                  . 

 

7.3.1 Phase Retrieval Problem 

If an object is bounded (i.e., nonzero only over a finite domain on the 

object plane ), and assume ( ) 0 0oI for all , then 
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0
( ) ( ) ( )j x j x

o o

r i

x d I e d I e

j
, which is analytic in the 

upper half of the complex z plane, i.e., the real and imaginary parts of 

( )x are connected by 

( ) ( )1 1
( ) , ( )

i r
r i

z z
x dz x dz

z x z x
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Let 
( )( ) ( ) j xx x e , then 

ln ( )1
( )

z
x dz

z x
. 

Note ln ( )z is not necessary to be analytic in the upper half of the z-plane, 

even if ( )z is known to be analytic there. But if 

2

2

ln ( )
( )

( ) 1

x
d x x and d x

x
, 

then 

*
( )

in

ln ( )1
( ) arg( )n

n zeroes of z n
the uhp of z

z x z
x dz

z x x z . 

Unfortunately, in general there is no good way to know the locations of the 

zeroes. Ambiguities exist in the general case. Some algorithms may be 

useful to conquer the difficulty. 

∎ Phase retrieval with iteration (the Fienup scheme) 

Assume: 1. ( )x has been measured; 

      2. ( )oI is bounded; and positive ( ) 0oI . 



Under the constraints, a successful iteration procedure to retrieve the phase 

and the object information had been developed by Fienup, which is sketched 

as followed: 

1. From the known ( )x , first calculate 
(1) 1( ) [ ( ) ]oI FT x ; 

2. By setting the negative values of 
(1)( )oI to be zero, and the nonzero 

(1)( )oI outside the bound of ( )oI to be zero 
(1)ˆ ( )oI . 

3. Take 
(2) (1)ˆ( ) [ ( )]ox FT I . 

4. Calculate 
(2)(2) arg[ ( )]( ) ( ) j xx x e . 

5. Repeat steps 1 to 4. 

 

A typical result of this phase retrieval procedure is summarized below 

 

 

  



7.3.2 Phase Retrieval in a Realistic Situation 

 

Iterative Projection Algorithms for Phase Retrieval 
By S. Marchesinia, Rev. of Scientific Instrum.78, 011301 (2007) 

 

 

Iterative projection algorithms can serve as a substitute of lenses in an optical imaging 

system to recombine light scattered by illuminated objects in a numerical manner. When 

the intensity pattern scattered by an object is collected by a camera, the phase information 

is missing. Consider an object of density ( )r withr being the coordinates in the object 

real space. The diffraction pattern generated 

2( ) ( ) ( ) | ( ) |I k k k k  

is equal to the modulus square of the Fourier-transform ( )k . The inverse Fourier-

transform [ ( )]IFT I k of the measured intensity yields the autocorrelation ( ) ( )r r

of the object. Since the intensity ( )I k represents the FT of the autocorrelation function, 

and the autocorrelation is twice as large as the object, the diffraction pattern intensity 

should be sampled at least twice as finely as the amplitude to capture all possible 

information on the object. It can be shown that less than critical sampling was sufficient 

to solve the phase problem. This was possible because the number of measured intensities 

in the 2D and 3D phase retrieval problems is larger than the number of resolution 

elements in the object. 

 

Coherence is required to properly sample the FT of the autocorrelation of the object. 

According to the Schell theorem, the autocorrelation of the illuminated object obtained 

from the recorded intensity is multiplied by the complex degree of coherence. The optical 

beam needs to fully illuminate the isolated object, and the degree of coherence must be 

larger than its autocorrelation. 

 

Phase retrieval problem in optics was solved by using the knowledge that the object being 

imaged is isolated, indicating the solution shall be 0 outside a region called support S 

(i.e., ( ) 0,  if r r S , resulting in a modulus constraint of 
2( ) | ( ) |ik r

r S

I k r e ). If 

the number of independent equations equals the number of unknowns, the system has a 

single solution. The intersection of these constraints (both the finite support and given 

modulus) forms the solution. Unfortunately this system of equations is difficult to solve, 

and has an enormous number of local minima. The presence of noise and limited prior 

knowledge further loose the constraints and thereby increases the number of solutions 

within the noise level and constraints. 

 



 
In the past decades, researchers had successfully developed several Iterative Projection 

Algorithms to solve the phase retrieval problem. As illustrated in the above figure, these 

algorithms try to find the intersection between two sets (i.e., S: the finite support and M: 

the given modulus). The search for the intersection is based on the information obtained 

by projecting the current estimate on the two sets. When the image belongs to both sets 

simultaneously, we have reached a solution. An error metric can be used to evaluate the 

distance between the current estimate and a given set. 

 

We can devise a projection sP  of ( )r onto S by setting ( )r to 0 outside the support S, 

while leaving the rest of the values unchanged 

( ) if 
( )

0 if s

r r S
P r

r S . 



And the complementary projector of s sP I P can also be defined. 

 

In an intensity measurement we obtain the amplitude or modulus in every pixel that 

defines a circle in a complex plane. These circles define the modulus constraint. When 

every complex-valued pixel lies on the 

circle defined by the corresponding modulus, the image that satisfies this constraint, 

which is nonconvex, belongs to the modulus set. The projection of a point in each 

complex plane onto the corresponding circle is accomplished by taking the point on the 

circle closest to the current one, setting the modulus to the measured one, and leaving the 

phase unchanged (which is a nonlinear operator),  

( ) ( )( ) ( ) ( ) | ( ) | ( )i k i k
m mP k k P k k e I k e , 

where
1 ( )m mP F P k F . 

 

A projector P  can be viewed as an operator that takes to the closest point in a set from 

the current point. A repetition of the same projection is equal to one projection alone
2P P , so its eigenvalues must be 0 or 1. Another useful operator for phase retrieval is 

the reflector defined by 2( ) 2R I P I P I , which applies the same step as the 

projector but moves twice as far. 

 

L2-norm of ( )r can be defined as 

22

2 2

| ( ) | 1
( )

( ) ( )k k

k

k k
 and can 

be employed to quantify the distance difference of ( )r from a set. 
2

P denotes 

the distance from the current point ( )r to the set. Thereby, the errors in real and 

reciprocal space can be defined in terms of their distance to the corresponding sets as 

( )s sP , and 

( )m mP . 

Projector mP  moves ( )r to the closest minimum of 
2( )m as shown by 



2 22 ( ) 0m m m m m m mP P P P P P . 

This also yields a simple relation with the gradient
2
m as shown below 

21
( ) ( ) ( ) ( )

2m m m m mP P I . 

Similarly, the projector sP  minimizes the error 2( )s as 

21
( ) ( ) ( ) ( )

2s S S s s sI P P . 

 

The PR algorithms require a starting point (0)( ) ( )k I k , which can be usefully 

generated by assigning a random phase to the measured object amplitude modulus in the 

Fourier domain. The simplest algorithm called error reduction (ER) is iterated via 

( 1) ( ) ( ) 2 ( ) 21 1
( ) ( )

2 2
n n n n

s m s s m s s mPP P P P . 

 

The solvent flipping (SF) algorithm is obtained by replacing the support projector sP  

with its reflector 

2s sR P I as 
( 1) ( )n n

s mR P . The hybrid input-output (HIO) is based on 

nonlinear feedback control theory and can be expressed as 

( )
( 1)

( )

( ) if 

( ) ( )  otherwise

n
mn

n
m

P r r S

I P r
. 



 
 

As illustrated in the above figure, ER simply projects back and forth between these two 

sets, and moves along the support line in the direction of the intersection. SF projects 

onto the modulus, reflects on the support, and moves along the reflection of the modulus 

constraint onto the support. The solvent flipping algorithm is slightly faster than ER 

thanks to the increased in the angle between projections and reflections. 

 

More advanced algorithms can also be devised to accelerate and improve the 

convergence to the global minimum. For examples, the difference map (DM), the 

averaged successive reflections (ASR), and the Hybrid Projection Reflection (HPR) had 

been successfully implemented for optical PR problem. HIO and variants ASR, DM, 

HPR move in a spiral around the intersection, eventually reaching the intersection. For 

similar β, RAAR behaves somewhere in between ER and HIO with a sharper spiral, 

reaching the solution much earlier. 



 
The basic features of the iterative projection algorithms can be understood by a simple 

model of two lines intersecting (a). The aim is to find the intersection. The ER algorithm 

and the solvent flipping algorithms 

converge in some gradient-type fashion (the distance to the two sets never increases), the 

solvent flip method being slightly faster when the angle between the two lines is small. 

HIO and variants move following a spiral path. 

 



 

The above figure depicts the error metric ( )m in a simple two-dimensional phase-

retrieval problem. The behavior of the ER algorithm toward the local minima is presented 

in (a). The presence of local minima will cause stagnation of steepest and conjugate 

gradient methods, preventing global convergence as shown by (c). The ability to escape 

local minima demonstrated by input-output feedback-based algorithms (see (d)) makes 

them superior to the methods based on simple gradient minimization of the error. 

However, as in the ER algorithm, the step length is not optimized, the algorithm keeps 

moving in the same direction for several steps, and sometimes overshoots. Combining the 

ideas of the conjugate gradient or the steepest descent methods and IO feedback could 

considerably speed-up convergence. Optimization of the step length by increasing a 

multiplication factor until the current and next search directions becomes perpendicular 

to one another (e). In analogy to the conjugate gradient method, one could substitute the 



search direction  following the conjugate gradient scheme (see f). A more robust 

strategy involves replacing the one-dimensional search with a 2D optimization of the 

saddle point (SO2D, see g). Solving the 2D min–max problem following the conjugate 

gradient scheme yields the best performance (see i). 

 

 

In short, HIO appears to be the most effective algorithm, and it is significantly 

improved in terms of speed and reliability when the 2D step size optimization is 

applied. 
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