Chapter 6 Image Formation Theory

In this chapter, we will discuss the mathematical formalism of image formation

process and relevant image resolution issue.

6.1 Intensity Impulse Response

First, let us consider an imaging system as depicted below. The object is
illuminated by an incoherent light source.
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Since Maxwell’s equations, which govern the propagation of light in free
space, are linear and the optical system is stationary, the following principles can
be invoked to facilitate the description of image formation:

m Linearity: Assuming f,(x") and f,(x")are two sources lying on the object plane
and the optical system images f,(x’) into g,(x), f,(x") into g,(x), respectively, then
the system will produce ag,(x) +bg,(x) for the linearly combined source

af,(x)+bf,(x).



m Stationarity: If the system maps f,(x)—g,(x) , then it will also map

f(X'=%") = g(x—%).

Based on the above properties, we can further draw the following conclusions:

()  Lets(x)be the image for a point source on the object plane, i.e., o(x") —s(x),

an arbitrarily distributed intensity distribution on the object plane can be

expressed as I ,(x') = j f(x")S(x'—x")dx",

(i)  From the linearity and stationarity of the system, the image distribution

formed on the image plane will be 1,() = [ f (x)s(x—x)dx".

Here s(x)is called as the point spread function (psf), which is the intensity

Impulse response, or the point diffraction pattern of the optical system.

6.1.1 The Expressionof Intensity Impulse Response

Refer to the figure
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and recall that the effect of a thin lens is to impose a phase factor

exp[—jk&?/(2)] on the incident wave with a transmission factor A(&) . Based on
the Huygens-Fresnel principle, the optical field on the image plane Z = (z,y) can

be expressed as
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By using the paraxial approximation at the far-field
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the optical field distribution at the image plane can be simplified to be
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With the paraxial approximation of x'<<z'and x<<z~ f , we achieve
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where (= +— _T) =0 on the image plane. And finally we have
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For a point source of u, (x) =5(x"), Uob(%)zjg(x-)e” 427 dx'=1, we then

_ j2n(E)x
obtain U, () =K [ A)-e" 7 d¢ .
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By defining s(x) =<U,,()U;, () >= KjA(f)-e #7d&|* which indicates that
2y

the intensity impulse response s(x) can be determined directly from the aperture

transmission function A(&), which is also called pupil function.

6.1.2 Image Formationin Terms of the Intensity Impulse Response

To facilitate further discussion, let us start with an 1-D case with a

rectangular aperture transmission function A(&)
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where C denotes the spot size of the intensity impulse response

f X . u
C=24-—=24-f" S(x) =1 sinc?(=)du
o and S(X) = sinc’ () du.

Let us define a = 2% (the ratio of object dimension and image spotsize)
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A series of images taking by an imaging apparatus with different f* (ie.,

differentC ) are shown below
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6.1.3 Resolutionin Terms of the Intensity Impulse Response

Now consider the image of two points 1,,(x") =1, -[6(x'=b)+o(x'+b)] in 1-D case



We calculate the image distribution
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where S(X)=‘_fa odg|® 4a2-smcz(T).

Rayleigh proposed aresolution criterion for an incoherent image by choosing a
separation 2D, 'of the two sinc? functions such that the central maximum of one

coincides with the first minimum of the other. The resulting image intensity
distribution has a small minimum at the center of the two-point images

with Zbr'zzl:lf# if z=1,
d

For partially coherent imaging, we can choose the separation of the two sinc?

2

0
functions such that —z | (¥)],0=0. Note



— : ka(x—b : k b
l..(X)= {Smcz(y) + Slncz(y)}and Sinc(x) = Sinc(—x) . The
resulting criterion (i.e., the Sparrow criterion) then becomes
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For 2-D case, s(x) =4a’[2], (7) / (7)] where a is the aperture radius of

the optical system. The corresponding resolution criteria become
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6.2 Image Formation Described by the Intensity Transfer Function

Image formation described by the Intensity Transfer Function is usually more

suitable for the imaging analysis of complicated objects. Consider an object with a

cosinusoidal intensity distribution as 1, (x") =1+ Acos(27z,X") , where A describes

the modulation amplitude, and £, the spatial frequency of the object. In view that

s(x) is a real function, the image distribution formed on the image plane becomes
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Visibility of the periodic image pattern can be displayed as
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where H(y,)is the optical transfer function.
Consider a general object, which the object intensity distribution can be described
by 1, (X) = j [, (e d u, with T, (1) being the object spectrum.
Then

1o (0) = [ T ()e 2 d
= 1 ()s(x=x )’ = [ T, (u)e > d ] [ (e >0 T
= [Ty (1)- (e "

2
_jzﬁsei

Thus, T () =1, (1)-5(1). Note S(X)=‘IA(§)G 2dé =
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implying that the un-normalized optical transfer function is given by the

unnormalized autocorrelation of the aperture function with its complex conjugate.

6.2.2 Image Formationin Terms of the Optical Transfer Function
To facilitate further discussionon the optical transfer function, let us consider

the following simple aperture function

1 |f<a

A(S) = .
0 [{>a

S(u)= J' A (EVA(E'+ Azu) dE' = the measure of the overlapping area as the

e . ~ a-izu Azu
aperture is slided across itself by Azu: S(u) = La dé=2a-Azu= 28[1—2—a].

By normalizing 5(), we deduce the optical transfer function to be
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By defining Z#:Z_a’ = H(u)=0-A7"|4).
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Some examples are given below for further illustration:

m Image of a Ronchi Ruling
Consider an image of a Ronchi ruling with incoherent light, the ruling is

described by
1 x'<p/d
I, (x)=<0 plA<x'<3p/4
1 3p/d<x'<p

and I, (X't p) =14, (x").
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For the object with Ronchi ruling
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1
If ; >——, only dc terms of the ruling passes through the optical system

described by H (), resulting in no intensity variation.

1 3
If ; < v < ; the resultant image consists of the central order of the sinc

function.
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The imaging properties were summarized in the following figure:
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6.3 Image Formation with Coherent Light

Consider the case that two fields U, (x,t)and U, (x,t) are superposed onthe space-

time point (x, t): U (X, t) =U,(x,t) +U,(x,1).

The total intensity becomes 1(X) =<U (X,t)U"(x,t) >=1,(x) +1,(X) + 2ReT,(x) ,

where U satisfies the wave equation for a quasi-monochromatic light with

U(x,t) = A(X)ei¢(x) gmizmvt _ A(X) el



6.3.1 The Imaging Problem with Coherent Light

Note U;, (X,t) = I:Uob(x',t')K(X—X') dx', where K(x—x")is the complex
amplitude in the image plane due to a point object, i.e., an amplitude impulse

response of the optical system. The light intensity distribution 1. (x) can be formed

on the image plane
I (X) =<U,_ (x,HU, "(x,t) >= H< U, (X, E)U,, (X" 1) >0 K(X=X) K (x=x")dx"dx"
m for an incoherent source <U_, (x',t)U,, (x",t") >.= 1, (X)S(x'=x"),
Iim (X) :<Uim (X’t)Uim*(X!t) >t: I Iob(XI)K(X_Xl) K*(X—X')dX'
= [ 1 0K = = [ 15, (x)s(x—x )’
m for a coherent source,
1 () = [ U, (X)K (X=X ) U, (x") K™ (x = x")lx dx”

:Uuob(x')K(x—x')dx'z

6.3.2 Amplitude Impulse Response

Referring to the optical imaging process shownabove,
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6.3.3 Coherent Imaging Resolution



Consider an imaging process of two point sources U, (&) =U (&)[6(£—b)+ (< +b)]
in an optical system

A
object & 7 24 [moge
{ r" / g ¥ 4 ’

[ (&:6) =<Uy, (51)Uob*(682) >
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Then Tin(%,%) = [[ T (6 K2+ 2) K2+ 22)dZ0E,, and
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1L (X) =T, (% =X)= I0{|K(x+b')|2 +|K(x=b")|’ +2Re[7/(b,—b)K(x+b')K*(x—b')]} ,

where [o1=J5- 22 =/plm.
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(@) Incoherent Limit with y(b,—b)=0 =
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(@) Incoherent Limit with »(b,—b)=0

Rayleigh Criterion : 2br'=3.832-%.

Sparrow Criterion : 2b5'=2.976-%.
(b) Coherent Limit with »(b,—b) =1
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6.4 Coherent Imaging: An Example

Consider an edge object such that

I >0
Iob (5) =10 .
0 E<0

m Incoherent lllumination of the Edge
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m Coherent lllumination of the Edge with 7(&,&,) =1
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where Si(x) = j —du Foryour reference, the image distribution 1, (x)as a

function of x-ka/z, is shown in the following:
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The photograph showing the edge patterns with incoherent (a) and coherent
imaging (b) are shown below. The corresponding traces across the edge are

presented on (c) and (d).
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