
Chapter 6  Image Formation Theory 

 

In this chapter, we will discuss the mathematical formalism of image formation 

process and relevant image resolution issue. 

 

6.1 Intensity Impulse Response 

First, let us consider an imaging system as depicted below. The object is 

illuminated by an incoherent light source. 

 

Since Maxwell’s equations, which govern the propagation of light in free 

space, are linear and the optical system is stationary, the following principles can 

be invoked to facilitate the description of image formation: 

∎ Linearity: Assuming 1 2( ') ( ')f x and f x are two sources lying on the object plane 

and the optical system images 1 1( ') ( )f x into g x , 2 2( ') ( )f x into g x , respectively, then 

the system will produce 1 2( ) ( )a g x b g x  for the linearly combined source 

1 2( ') ( ')a f x b f x . 



∎ Stationarity: If the system maps 1 1( ') ( )f x g x , then it will also map 

1 0 1 0( ' ') ( )f x x g x x   . 

 

Based on the above properties, we can further draw the following conclusions: 

(i) Let ( )s x be the image for a point source on the object plane, i.e., ( ') ( )x s x  , 

an arbitrarily distributed intensity distribution on the object plane can be 

expressed as ( ') ( ") ( ' ") "obI x f x x x dx  . 

(ii) From the linearity and stationarity of the system, the image distribution 

formed on the image plane will be ( ) ( ') ( ') 'imI x f x s x x dx  . 

Here ( )s x is called as the point spread function (psf), which is the intensity 

impulse response, or the point diffraction pattern of the optical system. 

 

6.1.1 The Expression of Intensity Impulse Response 

Refer to the figure 

. 



and recall that the effect of a thin lens is to impose a phase factor 

2exp[ (2 )]j k f  on the incident wave with a transmission factor ( )A  . Based on 

the Huygens-Fresnel principle, the optical field on the image plane ( , )x x y  can 

be expressed as  
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By using the paraxial approximation at the far-field 
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the optical field distribution at the image plane can be simplified to be 
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With the paraxial approximation of ' 'x z and x z f   , we achieve 
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where
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'z z f

    on the image plane. And finally we have 
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where 
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For a point source of ( ') ( ')obu x x , 
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obtain 
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By defining 
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    , which indicates that 

the intensity impulse response s(x) can be determined directly from the aperture 

transmission function A(), which is also called pupil function. 

 

6.1.2 Image Formation in Terms of the Intensity Impulse Response 

To facilitate further discussion, let us start with an 1-D case with a 

rectangular aperture transmission function ( )A   

. 

Based on the previous result,
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that when a bar object of 
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 is imaged, then its image will be 
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where C denotes the spot size of the intensity impulse response 
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Let us define 2b
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   (the ratio of object dimension and image spot size) 

. 

A series of images taking by an imaging apparatus with different 
#f  (i.e., 

different C ) are shown below 

. 

 

6.1.3 Resolution in Terms of the Intensity Impulse Response 

Now consider the image of two points ( ') [ ( ' ) ( ' )]ob oI x I x b x b       in 1-D case 



 

We calculate the image distribution  
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Rayleigh proposed a resolution criterion for an incoherent image by choosing a 

separation 2 'rb of the two sinc2 functions such that the central maximum of one 

coincides with the first minimum of the other. The resulting image intensity 

distribution has a small minimum at the center of the two-point images 

                              , 
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For partially coherent imaging, we can choose the separation of the two sinc2 

functions such that 
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and ( ) ( )Sinc x Sinc x  . The 

resulting criterion (i.e., the Sparrow criterion) then becomes 
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For 2-D case, 
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 ; where  a is the aperture radius of 

the optical system. The corresponding resolution criteria become 
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6.2 Image Formation Described by the Intensity Transfer Function 

Image formation described by the Intensity Transfer Function is usually more 

suitable for the imaging analysis of complicated objects. Consider an object with a 

cosinusoidal intensity distribution as ( ') 1 cos(2 ')ob oI x A x  , where A describes 

the modulation amplitude, and o the spatial frequency of the object. In view that 

s(x) is a real function, the image distribution formed on the image plane becomes 
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Visibility of the periodic image pattern can be displayed as 
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where ( )oH  is the optical transfer function.  

Consider a general object, which the object intensity distribution can be described 

by 
2( ) ( ) j x

ob obI x I e d    , with ( )obI  being the object spectrum. 

Then 
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Thus, ( ) ( ) ( )im obI I s    . Note 
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implying that the un-normalized optical transfer function is given by the 

unnormalized autocorrelation of the aperture function with its complex conjugate. 

 

6.2.2 Image Formation in Terms of the Optical Transfer Function 

To facilitate further discussion on the optical transfer function, let us consider 

the following simple aperture function 
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*( ) ( ') ( ' ) 's A A z d       = the measure of the overlapping area as the 

aperture is slided across itself by z  : ( ) 2 2 [1 ]
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By normalizing ( )s  , we deduce the optical transfer function to be 
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Some examples are given below for further illustration: 

∎ Image of a Ronchi Ruling 

 Consider an image of a Ronchi ruling with incoherent light, the ruling is 

described by 
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and ( ' ) ( ')ob obI x I x  . 

                     

Then,
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For the object with Ronchi ruling 
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and 
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#1 ( )z  . 



 

A. If #

1 1

z 
 , only dc terms of the ruling passes through the optical system 

described by ( )H  , resulting in no intensity variation. 

B. If #

1 1 3

z  
  , the resultant image consists of the central order of the sinc 

function. 
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The imaging properties were summarized in the following figure: 

 

 

6.3 Image Formation with Coherent Light 

Consider the case that two fields 1( , )U x t and 2 ( , )U x t are superposed on the space-

time point (x, t): 1 2( , ) ( , ) ( , )U x t U x t U x t  . 

The total intensity becomes 
*

1 2 12( ) ( , ) ( , ) ( ) ( ) 2Re ( )I x U x t U x t I x I x x     , 

where U satisfies the wave equation for a quasi-monochromatic light with 

( ) 2 2( , ) ( ) ( )j x j t j tU x t A x e e A x e       . 



6.3.1 The Imaging Problem with Coherent Light 

Note ( , ) ( ', ') ( ') 'im obU x t U x t K x x dx



  , where ( ')K x x is the complex 

amplitude in the image plane due to a point object, i.e.,  an amplitude impulse 

response of the optical system. The light intensity distribution ( )imI x can be formed 

on the image plane 
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∎ for a coherent source,  
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6.3.2 Amplitude Impulse Response 

           

Referring to the optical imaging process shown above, 
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Let ( ) ( , )obU     , therefore 
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In terms of polar coordinates,  
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6.3.3 Coherent Imaging Resolution 



Consider an imaging process of two point sources ( ) ( )[ ( ) ( )]ob oU U b b          

in an optical system 

                

*

1 2 1 2

*

1 2 1 1 2 2

0 1 2 1 1 2 2

( , ) ( ) ( )

( ) ( ) [ ( ) ( )][ ( ) ( )]

( , )[ ( ) ( )][ ( ) ( )]

ob ob ob

o o

U U

U U b b b b

I b b b b

   

         

          

  

       

      

. 

Then 
*1 1 2 2

1 2 1 2 1 2

2 1 2 1

( , ) ( , ) ( ) ( )im ob

x x
x x K K d d

z z z z

 
        ,  and 

 2 2 *

1 2 0( ) ( ) ( ') ( ') 2Re ( ' ') ) ), ( (im imI x x x I K x b K x b K x Kb xb bb            , 

where 
2

1

'
z

b b b m
z

   . 

∎ 1-D system 
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(a) Incoherent Limit with ( , ) 0b b      
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Rayleigh Criterion : 
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(b) Coherent Limit with ( , ) 1b b      
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∎ 2-D system 
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(a) Incoherent Limit with ( , ) 0b b    

Rayleigh Criterion : 23.8322 'r
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(b) Coherent Limit with ( , ) 1b b     
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6.4 Coherent Imaging: An Example 

Consider an edge object such that 
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∎ Incoherent Illumination of the Edge 
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∎ Coherent Illumination of the Edge with 1 2( , ) 1     
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where 
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  . For your reference, the image distribution ( )imI x as a 

function of 2x ka z is shown in the following: 

 

The photograph showing the edge patterns with incoherent (a) and coherent 

imaging (b) are shown below. The corresponding traces across the edge are 

presented on (c) and (d). 

 

(a)                              (b)                          (c) and (d) 


