
Chapter 5  Modern Theory of Optical Coherence 
 

5.1 Heuristic Introduction to Optical Coherence 

To understand the relationship of the performance of an interferometer with 

the optical source used, it is helpful to know the coherence property of light field. 

(see: A. Derode and M. Fink, The notion of coherence in optics, Euro. J. Phys. 15, 

81-90 (1994)). This chapter will focus on some fundamental concepts of the 

coherence properties of light. 

Let us first consider the intensity of an optical field, which is superposed 

from two fields denoted by 2
1{ }i i=Ψ  from an incoherent light source. We can present 

the resultant intensity as 2| |i
i

I = Ψ∑ . Now consider the case that a coherent source 

is used, the resultant intensity becomes the absolute square of the sum of the 

individual wave by 2

1,2
| |i

i
I

=

= Ψ∑ . What about the resultant intensity superposed 

from two fields from a partially coherent light? This is an important issue in 

viewing that there exist a wide variety of situations in which the partial coherence 

in the optical field needs to be considered. To answer the question, it is helpful by 

studying the following heuristic experiments, which had been performed by Young, 

et al. in 1800. 

(1) Experiment 1: Young’s double-slit interferometry with a monochromatic 

point light source. 



The typical fringe patterns formed on the observing screen were shown on the left. 

We can characterize these 

fringe patterns with the 

parameter of Visibility, 

which is defined by 

max min

max min

( )
( )
I IV
I I

−
≡

+
. 

Quantitative analysis will 

show the visibility is 

constant for the fringe 

patterns as depicted below: 

 

 

 

 

 

(2) Experiment 2: Young’s double-slit interferometry with a finite spectral 

bandwidth point light source 

The experimental 

arrangement is the same as that of 

Experiment 1 but using a different 

light source with a finite spectral 

bandwidth (for example 50 Å). In 

this case, the visibility can 

decrease as x increases (variable 



visibility over fringe pattern). This comparison can be summarized as: Source in 

Experiment 1 can retain visibility over much larger path difference; but source 2 

with finite bandwidth rapidly loses visibility (coherence) as path difference 

increases. 

Now let us consider optical coherence revealed by a different type of 

interferometry. 

(3) Experiment 3: Michelson Interferometry for Temporal Coherence 

Consider an optical field disturbance at a position P and at the instant t 
2( , ) ( , ) j tu P t A P t e πν=  with a central frequency ν  and a finite bandwidth ν∆ . Here 

( , ) ( , )A P t A P t t+  if 1 cτ ν τ∆ = = coherence time of the source. 

                          

 If M1 is moved from the position required for equal path lengths in the two 

arms of the interferometer, a relative time delay is induced between the two 

interfering beams. A mirror movement of 2 (2 )cλ ν= corresponds to two 

neighboring bright fringes. Superimposed on this rapid oscillation of intensity is a 

gradually tapering envelope of fringe modulation, caused by the finite bandwidth of 



the source and the gradual de-correlation of the complex envelope of the light 

( , )A P t  as the path length difference increases. 

 

 

5.2 Mathematical Description of the Experiment 3 

The response of the detector is governed by the intensity of the optical wave 

falling on its surface 2
1 2

2( ) | ( ) ( ) |D t
hI h K u t K u t
c

≡< + + >
 

 , where < …>t denotes a 

long time averaging. If u(P, t) is an ergodically stochastic process, <…>t  can be 

replaced by the ensemble average <…>. 
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Here *( ) ( ) ( ) tu t u tt tΓ =< + > =
  autocorrelation (i.e., the self coherence) function of the 

analytic signal u(t). We can define a normalized version of the self coherence 

function by  

[2 ( )] arg[ ( )]( ) ( ) (0) ( ) | ( ) |j je eπν τ a τ g τg ττ  g τ g τ− −= Γ Γ = = =

   complex degree of coherence 

of the light. Note 2 2c h h
c

ν τ
λ λ

= ⋅ = . The fringe pattern detected by the Michelson 

interferometer can then be expressed as  
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Visibility of the fringes becomes 
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The temporal coherence relates to the ability of two relative delayed light beams to 

form fringes. 

 

5.2.2 Interferogram and Power Spectral Density of a Light Beam 



Assuming u to be an analytic signal with 
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By use of the relationship between the ensemble averaging and the autocorrelation 

function ( , ) [ ( ) ( )] ( ) ( ) [ ( ), ( )] ( ) ( )Ut t E u t u t u t u t p u t u t du t du tt t t t tΓ + = + = + ⋅ + ⋅ +∫ ,  

we can define a power spectral density of analytic signal u as 
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where ( , ) ( )r r
U ν is the power spectral density of the real-valued optical disturbance 

( ) ( )ru t . 

( , ) 2 ( , ) ( , ) 2
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ˆ( ) 4 ( ) 4 ( ) ( )r r j r r r r je d d e dπν τ πν τγτ  ν ν ν ν ν ν

∞ ∞ ∞− −∴ = =∫ ∫ ∫   , where 

( , )ˆ ( )r r ν denotes the normalized power spectral density. 

Consider the power spectral density of some typical light sources: 

∎ Low-pressure gas discharge lamp with an inhomogeneous broadening due to 

Doppler effect 
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∎ High-pressure gas discharge lamp with a Lorentzian lineshape from strong 

collision 
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∎ Source with rectangular lineshape 
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If ˆ ( )ν is an even function of ( )ν ν− , 2( ) jreal value e πν τγτ  −⇒ = − ⋅ , and 
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5.3 Spatial Coherence 

What are the influences of a light source with an extended emitting area on a 

Young’s double-slit experiment. To analyze the influences, we first review the 

effects of 

∎ Pinhole Separation and Spectral Bandwidth of the Light Source used 

For a broadband light source (without using 

a spectral filter), the resultant 

interferograms with two pinhole separations 

(d=50 µm and 100µm) are shown on the 

left. 

 

 

 

 

If we insert a spectral filter behind the light source to reduce the bandwidth to 5 nm, 

then the following different patterns will be observed 

 

 



 

∎ Two-Beam Interference Experiment with Partially Coherent Light 

Now let us reduce the light coherence ( 12γ ) between the fields sampled by 

the two pinholes, which can be changed by increasing the separation of the 

pinholes used. 

 

 

 

 

 

 

 

 

 

 



∎ Two-Beam Interference Experiment with Two Different Light Sources 

 

 

 

 

 

 

 

Now an intuitive picture of Young’s two-beam interference experiment may 

be drawn below: 

1. If the light is approximately monochromatic and originates from a single point 

source (S1), sinusoidal fringes of high contrast are observed. 

2. If a second point source (S2) of the same wavelength as the first but radiating 

independently is added, a second fringe pattern is generated. 

 

The period of these two patterns are the same but the positions of zero path length 

difference are shifted relatively. 

If the pinhole separation is 

small, the fringes are very 

coarse, the shift of one fringes 

with respect to the other is a 

negligible fraction of a period 

as illustrating on the left. 



If the pinhole separation is large, then the fringe period is small, and the fringe is 

shifted by a significant fraction of its period. 

 

5.3.2 Mathematical Description of Spatial Coherence 

  

Let us consider the detector response at the position Q and at the instant t as 

*( ) ( , ) ( , )I Q u Q t u Q t=< > . By using Huygens-Fresnel principle, the field at Q in a 

Young’s interferometer can be described by 
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By invoking the Schwarz’s inequality, we now obtain  

12 11 22| ( ) | (0) (0)τΓ ≤ Γ Γ , 

where 11(0)Γ  and 22 (0)Γ are the self-coherence function of the light at pinhole P1 

and P2, respectively. We can define a complex degree of coherence by normalizing 

the cross-correlation function 

12
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and when Q lies on the symmetric axis of the pinhole P1 and P2, 2 1 0r r− = , which 
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A description of how 12 (0)γ  changes with the distance between P1 and P2 is a 

description of the spatial 

coherence of the light striking the 

pinhole plane. 

 

 

 

 

5.3.3 Geometric Considerations of Spatial Coherence 

                    

For simplicity, let us use paraxial approximation, 
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5.3.4 Interference under Quasi-Monochromatic Conditions 

Considering a narrowband light source ν ν∆  and 2 2 1 1[( ') ( ')] cr r r r c τ+ − +   

(the total time delay difference is much smaller than the coherent time 1cτ ν= ∆ ), 

which are called quasi-monochromatic conditions, the complex coherence function 
* 2 2

12 1 2 12( ) ( , ) ( , ) j ju P t u P t e J eπν t πν tt − −Γ < > = . Here 12J  is the mutual intensity at P1 and 

P2. The corresponding complex degree of coherence becomes 
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  with 12µ denoting the complex coherence factor. 

Therefore, the fringe pattern can be expressed as 

1 2 1 2 12 12
2

1 2 1 2 12 12
2

2( ) ( , ) 2 cos[ ( ) ]

22 cos[ ( ) ]

I Q I x y I I K K J x y
z

I I I I x y
z

π x η φ
λ

πµ x η φ
λ

= = + + ∆ ⋅ + ∆ ⋅ +

= + + ∆ ⋅ + ∆ ⋅ +
, 

where 



2 2 2 2
12 12 2 1 12 2 1

2 2

arg[ ] ( ) (0) ( )J
z z
π πφ r r a r r
λ λ

= − + = − + . If I1 and I2 are constant and 

independent of (x, y), then 

1 21 2
12 12

1 2

2 I II I
V

I I
µ µ

=

= =
+

, which is constant across the observation region.  

 

5.4 Cross-Spectral Purity 

                

Let us consider again the Young’s two-beam interference experiment shown above. 

For the known normalized power spectrum at P1 and P2, it is interesting to ask what 



is the shape of the power spectral density of the resultant light at Q? To answer the 

question, first we have to learn more some useful concepts. 

 

5.4.1 Power Spectrum of the Superposition of Two Light Beams 

         We can write the analytic signal at Q as 

1 1 1 2 2 2( , ) ( , ) ( , )u Q t K u P t K u P tt t= − + − . 

Assuming the two waves to be superimposed at Q have the same power spectrum 

1 2( ) ( ) ( )ν ν ν= =   , but suffer time delays 1 2andττ  .  

The self coherence function at Q can be deduced with 
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where 1 2 1 22 ( )A I I I I= + .  

We then perform Fourier transform (from τ to ν) on the above equation to yield the 

power spectrum at Q  
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5.4.2 Cross-Spectral Purity and Reducibility 

         We may ask: at what conditions the power spectral density of two-

superimposed-beam is equal to the original beam ˆ ˆ( ) ( )Q ν ν=  ? 

Let us calculate the difference 

2 12 ( )
12 12 2 1

12 2 1

ˆ ˆRe[ ( ) ( ) ( )]ˆ ˆ( ) ( )
1 Re[ ( )]

j

Q
A e

A

πν ττ ν γττ   νν ν
γττ 

− −⋅ − −
− =

+ ⋅ −


  . 

If ˆ ˆ( ) ( )Q ν ν=   for all I2, I1 and 2 1ττ − , then the nominator shall be zero, which 
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ˆ ˆ( ) ( ) ( )je πν τν γτ  ν− =  , which is oscillatory in ν . This equality can hold if we 
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Considering the field 1( )u P  and 2( )u P  from the same source to the screen are 

temporally shifted byτ , 

 

Then from the cross-spectral density of two linearly filtered random processes, 

                 



2
12
ˆ ˆ( ) ( ) je πν τν ν∴ =  for the two relatively delayed wave disturbances. The 

normalized spectrum of the superposition of two light beams that are identical 

except for a relative delay τ  becomes 
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Here the first term 12 0( )γτ  is due to a difference in optical pathlength, reflecting the 

spatial coherence.  This equation decomposes the complex degree of coherence 

12 0( )γττ  +  into a product of a spatial coherence and a temporal coherence ( )γτ  . 

For two beams to be cross spectrally pure, all spectral components of one beam 

must have the same normalized cross-correlation with the corresponding spectral 

components of the other beam. That is under the quasi-monochromatic condition, 
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5.5 Propagation of Mutual Coherence 

 

In this section, we would like study on how the mutual coherence propagates from 

a surface with given known distribution 1 2( , ; )P P τΓ . 

By invoking the Huygens-Fresnel principle with narrowband light, we have 
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The mutual intensity on 2S  for the quasi-monochromatic conditions can be 

obtained from 1 2( , ; 0)Q QG  
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The intensity distribution on the surface 2S can be found by letting 2 1Q Q®  
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5.5.1 Propagation of Mutual Coherence 

We have derived a mathematical expression of the mutual coherence on an 

arbitrary surface. But can we find equations such that by solving these equations 

with a given 1 2( , ; )P P tG , we can obtain 1 2( , ; )Q Q tG ? 

                   

Note in free space, the analytic wave disturbance ( , )u P t satisfies: 
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Therefore, we derive the propagation equations for 12( )tG  
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The forms of the mutual coherence and mutual intensity obtained from HF 

principle are a special solution of the above propagation equation. 

 

5.5.2 Propagation of Cross-Spectral Density 

Consider 12 12
ˆ( ) ( )

FT
τ νΓ →  , what is the propagation equation of 12

ˆ ( )ν ? 
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shall obey the same propagation laws as do mutual intensities. To find the solution 

for cross-spectral density, the corresponding result for mutual intensity can be used, 

subject only to the requirement that the parameter 
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5.6 Limiting Forms of the Mutual Coherence Function 

5.6.1 A Coherent Field 

A wave field is called fully coherent, if for every pair of points (P1, P2) on the 

wavefront, there exists a delay τ depending on (P1, P2), such that 12 ( ) 1γτ  = . That is 
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if and only if 2 12 1( , ) ( , )A P t K A P t t= + . That is a wave field is called perfectly 

coherent if and only if for every pair of (P1, P2) there exists a time delay τ such that 

the complex envelopes of the two wavefronts, relatively delayed by the required τ, 

differ by only a time-independent complex constant. 



                                

If the quasi-monochromatic conditions are imposed, the same 12ττ =  should 

be applied for any pair of (P1, P2). Now by letting 1 2P P→  
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The fringe pattern generated by a Young’s experiment becomes 
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5.6.2 An Incoherent Field 

For an incoherent field, the mutual intensity shall become 
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5.7 The Van Citter-Zernike Theorem               

 

From 1 2( , ; )Q Q tG  and let 0τ =  

2 1

1 1

1 2 1 2

2 ( )1 2
1 2 2 1

1 2

( , ) ( , ; 0)

( ) ( )
[ ( , ) ]

j r r

J Q Q Q Q

J P P e dS dS
r r

p ld r d r
l l

- -

S S

= G

= ×òò òò . 

For an incoherent source with 1 2 1 1 2( , ) ( ) ( )J P P K I P P Pd= - , 

2 12 ( )1 2
1 2 12

1 2

( ) ( )
( , ) ( )

( )

j r rK
J Q Q I P e dS

r r
p ld r d r

l
- -

S

= òò . 

Note 



∎ at far field 2
1 2

1 1 1

r r z
1 , and 

∎ 1 2( ) ( ) 1cqcq      for small angle 

2 12 ( )
1 2 12

( , ) ( )
( )

j r rK
J Q Q I P e dS

z

p l

l
- -

S

\ = òò . 

∎ By invoking the paraxial approximation in the phase factors, 
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Let 1 1 1 2 2 2( , ), ( , )Q x y Q x y= = and define 2 1 2 1,x x x y y yD = - D = - , we obtain 

the Van Citter-Zernike theorem 

2
( )

1 2 2
( , ) ( , )

( )

j
j x y

z
K e

J Q Q I e d d
z

p
y h

ly h y h
l

- Y
D × ,D ×

S

= òò   

where 2 2
2 1[ ]

z

p
r r

l
Y = -  denoting a normalized squared length difference from Q1 
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ii. 2 1r r  for symmetrical positions relative to the optical axis;  

iii. Q1 and Q2 are on a spherical surface instead of on the planar screen. 

 

We can deduce a coherent area of the light source on the xy plane as 

2 2( )
( , ) ( ) ( )c

s

z
A x y d x d y

A

l
m

,¥ ,¥

-¥ -¥
= D D D D =ò ò , where  sA  is the source area of a 

uniformly bright incoherent source. 

 

5.7.2 An Application Example of Van Citter-Zernike Theorem 

Let 2 2
0( , ) ( )I I circ axixi   = , be a uniformly bright source with a diameter of 2a. 

The resulting mutual intensity after propagation becomes 
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We then derive the Rayleigh-Abbe resolution criteria as 0 1.22S
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 , implying that a coherent spot can be  obtained  even 



with an incoherent source. The resulting coherent area is inversely proportional to 

the solid angle extended by the incoherent source at the observation position. 



Chapter 5  Modern Theory of Optical Coherence

5.1 Heuristic Introduction to Optical Coherence

To understand the relationship of the performance of an interferometer with the optical source used, it is helpful to know the coherence property of light field. (see: A. Derode and M. Fink, The notion of coherence in optics, Euro. J. Phys. 15, 81-90 (1994)). This chapter will focus on some fundamental concepts of the coherence properties of light.


Let us first consider the intensity of an optical field, which is superposed from two fields denoted by 

[image: image218.jpg]I

Typical Fringes
observed

oo




 from an incoherent light source. We can present the resultant intensity as 
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. Now consider the case that a coherent source is used, the resultant intensity becomes the absolute square of the sum of the individual wave by 
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. What about the resultant intensity superposed from two fields from a partially coherent light? This is an important issue in viewing that there exist a wide variety of situations in which the partial coherence in the optical field needs to be considered. To answer the question, it is helpful by studying the following heuristic experiments, which had been performed by Young, et al. in 1800.
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Experiment 1: Young’s double-slit interferometry with a monochromatic point light source.
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The typical fringe patterns formed on the observing screen were shown on the left. We can characterize these fringe patterns with the parameter of Visibility, which is defined by 
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. Quantitative analysis will show the visibility is constant for the fringe patterns as depicted below:
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(2) Experiment 2: Young’s double-slit interferometry with a finite spectral bandwidth point light source
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The experimental arrangement is the same as that of Experiment 1 but using a different light source with a finite spectral bandwidth (for example 
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Å). In this case, the visibility can decrease as x increases (variable visibility over fringe pattern). This comparison can be summarized as: Source in Experiment 1 can retain visibility over much larger path difference; but source 2 with finite bandwidth rapidly loses visibility (coherence) as path difference increases.

Now let us consider optical coherence revealed by a different type of interferometry.

(3) Experiment 3: Michelson Interferometry for Temporal Coherence

Consider an optical field disturbance at a position P and at the instant t 
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If M1 is moved from the position required for equal path lengths in the two arms of the interferometer, a relative time delay is induced between the two interfering beams. A mirror movement of 
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corresponds to two neighboring bright fringes. Superimposed on this rapid oscillation of intensity is a gradually tapering envelope of fringe modulation, caused by the finite bandwidth of the source and the gradual de-correlation of the complex envelope of the light 
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 as the path length difference increases.
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5.2 Mathematical Description of the Experiment 3

The response of the detector is governed by the intensity of the optical wave falling on its surface 
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 , where < …>t denotes a long time averaging. If u(P, t) is an ergodically stochastic process, <…>t  can be replaced by the ensemble average <…>.
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Here 
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autocorrelation (i.e., the self coherence) function of the analytic signal u(t). We can define a normalized version of the self coherence function by 
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 complex degree of coherence of the light. Note 
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. The fringe pattern detected by the Michelson interferometer can then be expressed as 
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Visibility of the fringes becomes
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The temporal coherence relates to the ability of two relative delayed light beams to form fringes.

5.2.2 Interferogram and Power Spectral Density of a Light Beam

Assuming u to be an analytic signal with
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By use of the relationship between the ensemble averaging and the autocorrelation function 
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we can define a power spectral density of analytic signal u as



[image: image30.wmf]2


2


2


(,)(,)(,)(,)


(,)(,)(,)


1


lim()()(,)


(,)(


[|()|]


()lim


[]


{()()[()()]}


2{()()}2(


)


j


T


U


T


j


rr


T


U


iiirri


UUUU


rrirr


UUU


U


r


tt


rectrectttdt


TTT


tt


EU


ed


T


edFT


FTj


FTj


pnt


pnt


t


t


tt


n


nt


t


tttt


ttn


¥


-¥


®¥


-


¥


¥


-¥


¥


¥


®


==×


==


+


G+


G+G


=G+G+G-G


=G+G=


ò


ò


ò


P


P


(,)


(,)


)2sgn()()


4();0


0;0


rr


U


rr


U


nn


nn


n


+


ì


>


ï


=


í


ï


<


î


P


P


,

where
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is the power spectral density of the real-valued optical disturbance 
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, where 
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denotes the normalized power spectral density.


Consider the power spectral density of some typical light sources:


∎ Low-pressure gas discharge lamp with an inhomogeneous broadening due to Doppler effect
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∎ High-pressure gas discharge lamp with a Lorentzian lineshape from strong collision
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∎ Source with rectangular lineshape
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If 
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5.3 Spatial Coherence

What are the influences of a light source with an extended emitting area on a Young’s double-slit experiment. To analyze the influences, we first review the effects of

∎ Pinhole Separation and Spectral Bandwidth of the Light Source used
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For a broadband light source (without using a spectral filter), the resultant interferograms with two pinhole separations (d=50 m and 100m) are shown on the left.

If we insert a spectral filter behind the light source to reduce the bandwidth to 5 nm, then the following different patterns will be observed
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∎ Two-Beam Interference Experiment with Partially Coherent Light
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Now let us reduce the light coherence (

[image: image46.wmf]12
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) between the fields sampled by the two pinholes, which can be changed by increasing the separation of the pinholes used.

∎ Two-Beam Interference Experiment with Two Different Light Sources
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Now an intuitive picture of Young’s two-beam interference experiment may be drawn below:

1. If the light is approximately monochromatic and originates from a single point source (S1), sinusoidal fringes of high contrast are observed.


2. If a second point source (S2) of the same wavelength as the first but radiating independently is added, a second fringe pattern is generated.


The period of these two patterns are the same but the positions of zero path length difference are shifted relatively.
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If the pinhole separation is small, the fringes are very coarse, the shift of one fringes with respect to the other is a negligible fraction of a period as illustrating on the left.

If the pinhole separation is large, then the fringe period is small, and the fringe is shifted by a significant fraction of its period.


[image: image47.jpg]I

G &






5.3.2 Mathematical Description of Spatial Coherence
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Let us consider the detector response at the position Q and at the instant t as
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. By using Huygens-Fresnel principle, the field at Q in a Young’s interferometer can be described by
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By invoking the Schwarz’s inequality, we now obtain 
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are the self-coherence function of the light at pinhole P1 and P2, respectively. We can define a complex degree of coherence by normalizing the cross-correlation function
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and when Q lies on the symmetric axis of the pinhole P1 and P2,
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A description of how 
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 changes with the distance between P1 and P2 is a description of the spatial coherence of the light striking the pinhole plane.

5.3.3 Geometric Considerations of Spatial Coherence
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For simplicity, let us use paraxial approximation,
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5.3.4 Interference under Quasi-Monochromatic Conditions


Considering a narrowband light source 
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denoting the complex coherence factor. Therefore, the fringe pattern can be expressed as
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5.4 Cross-Spectral Purity
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Let us consider again the Young’s two-beam interference experiment shown above. For the known normalized power spectrum at P1 and P2, it is interesting to ask what is the shape of the power spectral density of the resultant light at Q? To answer the question, first we have to learn more some useful concepts.

5.4.1 Power Spectrum of the Superposition of Two Light Beams


         We can write the analytic signal at Q as
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Assuming the two waves to be superimposed at Q have the same power spectrum 
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The self coherence function at Q can be deduced with
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By using the notation of 
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Then normalize the self coherence function at Q
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where
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We then perform Fourier transform (from τ to () on the above equation to yield the power spectrum at Q 
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5.4.2 Cross-Spectral Purity and Reducibility


         We may ask: at what conditions the power spectral density of two-superimposed-beam is equal to the original beam 
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Let us calculate the difference
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Since this equality must hold for all 
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Therefore, 
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Considering the field 
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Then from the cross-spectral density of two linearly filtered random processes,
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Here the first term 
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is due to a difference in optical pathlength, reflecting the spatial coherence.  This equation decomposes the complex degree of coherence 
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For two beams to be cross spectrally pure, all spectral components of one beam must have the same normalized cross-correlation with the corresponding spectral components of the other beam. That is under the quasi-monochromatic condition, we have
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5.5 Propagation of Mutual Coherence
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In this section, we would like study on how the mutual coherence propagates from a surface with given known distribution
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By invoking the Huygens-Fresnel principle with narrowband light, we have




[image: image128.wmf]11


1122


111222


12


()()


(,)(,),(,)(,)


rr


uQtuPtdSuQtuPtdS


jrcjrc


cqcq


tt


ll


SS


+=+-=-


òòòò


.

The mutual coherence on 
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The mutual intensity on 
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The intensity distribution on the surface 
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5.5.1 Propagation of Mutual Coherence


We have derived a mathematical expression of the mutual coherence on an arbitrary surface. But can we find equations such that by solving these equations with a given 
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Note in free space, the analytic wave disturbance 

[image: image143.wmf](,)


uPt


satisfies:




[image: image144.wmf]2


2


22


1


(,)(,)0


uPtuPt


ct


¶


Ñ-=


¶


.


From 

[image: image145.wmf]**


121212


()(,)(,)()()


uPtuPtutut


ttt


G=<+>=<+>


, we obtain




[image: image146.wmf]222


2*


112111222


222


111


2


2*1*


1122


22


2


*


12


22


()()(,,;)(,,;)


()


1


[()]()()


1


()()


uxyztuxyzt


xyz


ut


ututut


c


utut


c


tt


t


t


t


t


t


¶¶¶


ÑG=++<+>


¶¶¶


¶+


=<Ñ+×>=<×>


¶


¶


=<+>


¶


.

Therefore, we derive the propagation equations for 
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The forms of the mutual coherence and mutual intensity obtained from HF principle are a special solution of the above propagation equation.


5.5.2 Propagation of Cross-Spectral Density

Consider
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, implying that cross-spectral densities shall obey the same propagation laws as do mutual intensities. To find the solution for cross-spectral density, the corresponding result for mutual intensity can be used, subject only to the requirement that the parameter 
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5.6 Limiting Forms of the Mutual Coherence Function

5.6.1 A Coherent Field

A wave field is called fully coherent, if for every pair of points (P1, P2) on the wavefront, there exists a delay τ depending on (P1, P2), such that 
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If the quasi-monochromatic conditions are imposed, the same 
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 EMBED Equation.DSMT4  [image: image171.wmf],

Implying that for a quasi-monochromatic fully coherent light, the complex envelopes at all points vary in unison differing from each other only by time-invariant amplitude and phase factor, i.e., 
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The fringe pattern generated by a Young’s experiment becomes
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5.6.2 An Incoherent Field

For an incoherent field, the mutual intensity shall become 
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For an incoherent source with
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∎ By invoking the paraxial approximation in the phase factors, 
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, we obtain the Van Citter-Zernike theorem
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where
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 denoting a normalized squared length difference from Q1 and Q2 to the optical axis. The corresponding complex coherence factor becomes
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For
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iii. Q1 and Q2 are on a spherical surface instead of on the planar screen.

We can deduce a coherent area of the light source on the xy plane as
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, where  
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 is the source area of a uniformly bright incoherent source.

5.7.2 An Application Example of Van Citter-Zernike Theorem

Let 
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be a uniformly bright source with a diameter of 2a. The resulting mutual intensity after propagation becomes
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where

[image: image203.wmf]22


22


()()


aa


uxyS


zz


pp


ll


=D+D=


.


For 

[image: image204.wmf]11


()03.83


Juu


=Þ=


, 

[image: image205.wmf]000


22


3.833.83


aa


SSS


zz


ppp


q


lll


=Þ××=××=


. 


We then derive the Rayleigh-Abbe resolution criteria as 
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, implying that a coherent spot can be  obtained  even with an incoherent source. The resulting coherent area is inversely proportional to the solid angle extended by the incoherent source at the observation position.
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