
Chapter 3  Stochastic Processes in Optics 
 

Consider a family of curves, e.g., { ( ; ) , }f x x with RVλ λ λ= ∈ . The individual members 

of the family are defined by their λ values. If λ is a RV, then ( ; )f x λ  is called a 

stochastic process. For example, 

 

( ; )f x λ can be a smooth function of x; the randomness lies in which curve f(x) of the 

family λ was chosen. The occurrence probability of λ is depicted by its associated pdf 

( )p λΛ . 

For clarity, in the following, we will depict two examples of stochastic processes: 

{ ( ; ) cos( 2 ), }f t t kd d dwith RVw= − ∈•  are Radar signals, which are stochastic with 

the RV d (random distance to the unknown source). ( ; )f t d is a smooth function of t. 

( ){ ( ; ) }jkz jkf k e βf + ∆=•


. 1 2{ ( ), ( ),..., ( )}Nkφ β β β= ∆ ∆ ∆ , which iβ  relates to the inclination 

angle (or spatial frequency) of the optical wave, denotes a random phase across the pupil 

of an imaging system. 

For an ensemble of functions { ( ; )f x λ }, the average ( ; ) ( ; ) ( )f x f x p dλ λ λ λΛ< >= ∫  

taking over the random values of λ, which is called an ensemble average of the 

stochastic process. 



 

3.1 Power Spectrum 

We can conveniently define a definite Fourier transform of a stochastic process ( ; )f x λ


 

as  

( ; ) ( ; )
L j x

L L
F f x e dxωω λ λ

+ −

−
≡ ∫

d

. 

Thus, the power spectrum of ( ; )f x λ


 can be revealed by 

2
( ) lim ( ; ) (2 )f LL

S F Lωωl 
→∞

 = < >  



. 

The denominator 2L is needed in order to yield a finite value for ( )fS ω . This formula 

describes the allocation of average power to the various frequencies comprising ( ; )f x λ


. 

 

3.2 Autocorrelation Function 

We can define the autocorrelation function 0( ; )fR x x  of a stochastic process ( ; )f x λ


 as  

*
0 0 0( ; ) ( ; ) ( ; )fR x x f x f x xλ λ≡ < + > , 

which can be viewed as an average over RV’s λ


 of ( ; )f x λ


 at same arbitrary point 0x  

times *
0( ; )f x x λ+


 at a point distance x away. 

If 0( ; )fR x x  equals ( )fR x  regardless of position 0x , and if the mean value of 

( ; )f x λ


 is independent of x, i.e.,  

*( ; ) ( '; ) ( ')ff x f x R x xλ λ< >≡ −  and ( ; )f x λ< >= constant, 



we call this stochastic process wide-sense stationary. Furthermore, we can calculate 

correlation in fluctuation of ( ; )f x λ


 from its means at the two points by 

* *
0 0 0 0 0

2
0

( ; ) [ ( ; ) ( ; ) ][ ( ; ) ( ; ) ]

( ) ( ; )f

x x f x f x f x x f x x

R x f x

ρ λ λ λ λ

λ

= < − + − + >

= − < >
. 

Now consider n stochastic processes 1 1( ; )f x λ


, 2 2( ; )f x λ


, …, ( ; )n nf x λ


 (note the 

processes are different if , and so are their observation points xi). 

 

Note also that a stochastic process ( ; )f x λ  at fixed 0x  is essentially a random 

variable 0( ; )f x λ .  Therefore, we can define a joint probability density function 

as 1 2( , ,...., )np f f f . Shift each of the processes by x: 'i ix x x= + .  

If 1 2 1 2( , ,...., ) ( ', ',...., ')n np f f f p f f f= , where '( '; ) ( ; )i i i if x f x xλ λ= +
 

 and regardless of the 

size of x, we call 2{ , ,..., }i nf f f  to follow strict-sense stationarity, which indicates that the 

joint statistics of the n stochastic processes are independent of their absolute position in 

the signal. 

 

3.3 Fourier Transform Theorem 

For a wide-sense stationary process, ( )fR x  and ( )fS w  form a Fourier transform pair, 
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Here we have done an integration variable substitution ' 'y x x dx dy= - Þ = - . 

Let us consider the power spectrum of a signal ( ; )f x λ


. Assuming that f is uncorrelated at 

different points but correlates with itself at the same point, i.e., 

*

2

0; '
( ; ) ( '; )

( ); '

x x
f x f x

m x x x
m m

ì ¹ïï< >= íï =ïî

 

. 

(i) Let 2
2( ) | ( ; ) |m x f x mº< >



 depends only on x, then 

2
1

( ) lim ( )
2

L

f LL
S m x dx const

L
x

+

-®¥
= =ò . 

(ii) If 2
2 2( ) | ( ; ) |m x f x const mmº< >= =



  independent of x, then 2( )fS mw = . 

Both cases indicate the uncorrelated stochastic process ( ; )f x λ


 to have a white power 

spectrum. 

 

An application example 

Consider again an imaging system with a point spread function 

2( ) ( )sincka kaS y y
f fπ

= . 



 

At any instant of time, the net phase ( )bD  at the normalized lateral displacement point 

b  on the pupil can be decomposed to be 

o( ) ( ) ( )Rb b bD = D + D , 

where o( )bD denotes a deterministic contribution from the imaging lens which is 

constant in time; ( )R bD is random in time due to the turbulence. Therefore, the transfer 

function in the image plane can be expressed as 

o

o

[ ( ) ( )]( ) jkT k e d
b b b w
w b

w bD -D -

-
= ò . 

Due to a long-time exposure, the time averaged transfer function shall become 

o
o o

o

[ ( ) ( )][ ( ) ( )]( ) R RjkjkT k d e e
b b b wb b w

w b
w b D -D -D -D -

-
< >= × < >ò , 

indicating that we need to know the statistics for ( )R bD  at two points b  and b w- . 

•  Let us assume ( )R bD obeys the central limit theorem, leading to that ( )R bD is normal 

at each β . 

•  ( ) 0R b< D >= , indicating the phase fluctuations can go negative as often as positive. 



•  ( )R bD is strict-sense stationary for two points b  and b w-  in the pupil plane, i.e., 

[ ( ), ( )] [ ( ), ( )]o oR R R Rp pβ β ω β ω β ωω ∆ ∆ − = ∆ − ∆ − −  for arbitrary ow .  

Thus, [ ( ), ( )] [ , ']R R R Rp pβ β ω∆ ∆ − = ∆ ∆  is independent of b . The joint probability 

statistics for phase at two points of separation w is independent of their absolute 

positions in the pupil plane. 

Based on these results, we can further deduce 

•  ( )Rp D = marginal probability of R∆ = [ , '] 'R R Rp d∆ ∆ ∆∫  is independent of b . 

•  2 2 ' 2 ' ' 2( ) ( ) 'R R R R R Rp d p ds s= D D D = D D D =ò ò . Every point in the pupil plane 

suffers the same turbulence effect. And 

•   

( ) ( )

( ) ( ) ( ( ), ( )) ( ) ( )

( ) .

R R

R R R R R Rp d d

depends on only

s b b w

b b w b b w b b w

s w w

=< D D . >

= D D . D D . D D .

= =
ò  

Correlation of the phases at two points depends only on the distance between the two 

points.  

Based on these findings, the average transfer function becomes 

( ) ( ) ( ) ( ) ( )o R o GBT T T Tw w w w f w< >= = , where 
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=
ò ò , from 

turbulence effect, which depends on , , and λ σ ρ .  



For a numerical estimation, let us assume 4s l , 
2

2k
p

s s p
l

=  , 
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3.4 Transfer Theorem for Power Spectrum 

Consider an image formation process ( ) ( ; ) ( )i y dx s y x o x
+∞

−∞
= ∫ . 

(i) If ( )o x  is a stochastic process ( ; )o x λ


, what is ( )iS ω  of the image? 

To answer the question, note first 
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Here the modulus transfer function ( )MTF ω of the imaging system is deduced from 

| ( ) |T ω . 

If ( )oS ω =constant=k  (i.e., white power spectrum), then 

1 2( ) [ ( ) ]iMTF S kωω = . 



This result provides a simple way to determine ( )MTF ω . 

We consider an object formed by two point sources locating at 2a±  in the object plane:  

( ) ( 2) ( 2)o x B x a B x aδ δ= − + + . The power spectrum of the object can be easily 

calculated to be: 2 2| ( ) | 4 cos( 2)O B aωω = ,  revealing a set of fringes with periods 

depending on a. 

 

In the following figure, we show a typical speckle pattern from a short-exposure image of 

a single star 

 . 



(ii) If ( ; )s y x λ−


 is a stochastic process, for example, a telescope is repeatedly 

imaging an object ( )o x  through short-term turbulence. Many images 

{ ( ; )}i x λ


can be formed. 

Note that 

*

* *

( ; ) ( ; )

( ; ) ( ; ) ( ) ( )

I I

T T O O
λ

λ

ω λ ωω  λ

ω λ ωω  λ ωωω 

< + ∆ >

=< + ∆ > + ∆





 

  . 

This equation suggests that the autocorrelation of the image spectrum contains phase 

information about the object and therefore provides a simple way to retrieve the phase of 

the object from the observed images. 

 

3.5 Noise 

Noise n(x) in a signal can be defined as any departure of the measured signal (i.e., the 

data) d(x) from its ideal value (i.e., the true signal) s(x):  

( ) ( ) ( )n x d x s x≡ − . 

If both s and n are stochastic processes with each obeying arbitrary probability laws 

( )Sp s  and ( )Np n at x, then 

( ; , ') ( ; ) ( ; ')d x s x n xλ λ λ λ≡ +
dddd  

. 

Here RVs ( )s x  and ( ')n x do not correlate at any x and x’, i.e., s and n are statistically 

independent RVs, then 

( ; ) ( '; ') ( ; ) ( '; ') 0s x n x s x n xλ λ λ λ< >=< >< >=
   

  ( ( '; ') 0n x λ< >=


 ). 



The noise ( ; )n x λ


 is called additive noise. 

Defining a joint probability density function of input s and output d at an arbitrary but 

fixed x:  

( ; )DSp d s = ( | ) ( )Sp d s p s . 

If ( )Sp s is known, ( | ) ( | ) ( | )p d s p s n s p n s= + =  from d s n= +  and a fixed s. 

Because n is additive ( | ) ( )Sp s n p s= , we can further deduce  

( | ) ( ) ( ) ( )( | ) ( )
( ) ( )

N S N
N

S S

p s n p n p s p np n s p n
p s p s

= = = . 

( | ) ( ) ( )N Np d s p n p d s∴ = = − . 

Thus, ( , ) ( | ) ( ) ( ) ( )DS S N Sp d s p d s p s p d s p s= = − . 

 

Note that 

1. signal ( ; )s x λ


 usually has a strong correlation over some finite range of x;  

2. white noise ( ; )n x λ


is uncorrelated in x, leading to 

2( ; ) ( '; ) ( ) ( ')n x n x m x x xλ λ δ< >= −
δδ

, a random noise with a white power spectrum. 

2 2 2

2
2

( ) ( ; ) ( ; ) ( ; ) 0

( ; ) ( )
n x n x n x if n x

n x m x

σ λ λ λ

λ

=< > − < > < >=

=< >≡
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 . 

Wide-sense stationary noise 2( ; ) ( '; ) ( ')nn x n x x xλ λ σ δ⇒ < >= −
δδ

. 

 



3.6 Ergodic Property 

Let kλ


 indicates the k-th particular set of λ


values, ( ; )kn x λ


 k=1, 2, 3 …, N. 

At any fixed x=xo, there is a probability law ( )
oxp n for random values of n. 

 

A histogram built up of noise occurrences across curve ( ; )kn x λ


 (along x) should be 

identical to the probability law ( )
oxp n , with xo fixed, as formed from curve to curve (i.e., 

( )
oxp n is independent of xo).  This is the principle of Ergodic Theorem:  

( ; ) ( ; )k kn x n x dxλλ λ
+∞

−∞
< > = ∫d

dd

. 

 

3.7 Optimum Restoring Filter 

If ( ; , ') ( ) ( ; ) ( ; ')i y dx s y x o x n yλ λ λ λ
+∞

−∞
= − +∫

dddd  

= blur due to deterministic spread 

function + additive noise. 

By taking Fourier transform, we obtain 



( ; , ') ( ) ( ; ) ( ; ')
FT

I T O Nω λ λ ωω  λ ω λ→ = +
   

. 

We can construct a restoring filter function ( )Y ω  to retrieve ˆ ( ) ( ) ( )O Y Iωωω  = from 

an image. 

An appropriate restoring filter ( )Y ω can be found by defining 

2 2
ˆˆ[ ( ; ) ( ; )] | ( ; ) ( ; ) |e o x o x dx O O dλ λλ λ ω λ ω λ ω

+∞ +∞

−∞ −∞
=< − > =< − >∫ ∫ . 

By substituting ˆ ( ) ( )[ ( ) ( ) ( )]O Y T O Nωωωωω    = +  into the above equation 

2

2 2 2 2 * 2

* * 2 *
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< > < >

< > < >

∫
∫ . 

By a minimum mean-square error (mmse) criterion: 0eδ = , we can obtain ( )Y ω . 

Assuming ( ; )n x λ


is additive to ( ; , ')o x λ λ
 

, i.e., *( ; ) ( '; ') 0o x n xλ λ< >=
 

.  

By taking Fourier transform, 

* '' ( ; ) ( '; ') 0
FT

j x j xO N dx e dx e o x n xωω  λ λ
+∞ ∞− −

−∞ −∞
= < >= < > =∫ ∫

dd

, 

* 2 * *{ ( ) [| | ( ) ( )] ( ) ( )}o o n oe d S YY T S S Y T YT Sωωωωω   
+∞

−∞
∴ = + + − +∫ =minimum. 

* *0 ( ) 0d L Le
d Y Y

d
ω

∂ ∂
= ⇒ = =

∂ ∂

, where 
dYY
dω

= . 

Thus, 
*

min2 2

( ) ( ) ( ) ( )( )
| ( ) | ( ) ( ) | ( ) | ( ) ( )

o n o
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T S S SY and e d
T S S T S S
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∞
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+ +∫ . 



 

( )Y ω obtained by this criterion is called Wiener-Helstrom filter. 

(i) If ( ) 0n oS S Y ω⇒  . ( )Y ω  blanks out data frequencies which are too 

noisy. 

(ii) If 
1(
( )n oS S Y

T
ω

ω
⇒  , corresponding to an inverse filter. 

Therefore, optimal Wiener-Helstrom filter does its job by rejecting high-noise frequency 

components and accepting low-noise components. 

 

In the following we present the effect of an optimal Wiener-Helstrom filter. The input 

image was first blurred with a Gaussian filter using sigma=1. The bluured image was 

then degraded by an additive white noise (20% to that of maximum signal). The blurred 

and noisy image has pSNR=65.1 relative to the original image. The restored image with 

regulated direct inversion was shown in the third picture, which yields pSNR=56.3. Much 

better image with pSNR=77.1 can be restored using an optimal Wiener-Helstrom filter as 

long as the noise statistics was known. We can construct a Wiener-Helstrom filter 

without knowing the noise statistics to restore an image with pSNR=73.7, performance 

matching to that of the optimal Wiener-Helstrom filter. 

 
Input Image                              Blurred and Degraded by Noise (pSNR=65.1) 



 
Restored by Regulated directed inversion     Wiener-Helstrom optimal filter   Estimated Wiener-Helstrom filter  

(pSNR=56.3)                                                (pSNR=77.1)                       (pSNR=73.7) 
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Consider a family of curves, e.g., 
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can be a smooth function of x; the randomness lies in which curve f(x) of the family ( was chosen. The occurrence probability of ( is depicted by its associated pdf 
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For clarity, in the following, we will depict two examples of stochastic processes:
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 relates to the inclination angle (or spatial frequency) of the optical wave, denotes a random phase across the pupil of an imaging system.


For an ensemble of functions {
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 taking over the random values of (, which is called an ensemble average of the stochastic process.

3.1 Power Spectrum

We can conveniently define a definite Fourier transform of a stochastic process 
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Thus, the power spectrum of 
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The denominator 2L is needed in order to yield a finite value for
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3.2 Autocorrelation Function

We can define the autocorrelation function 
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which can be viewed as an average over RV’s 
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we call this stochastic process wide-sense stationary. Furthermore, we can calculate correlation in fluctuation of 
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Now consider n stochastic processes 
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Note also that a stochastic process
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3.3 Fourier Transform Theorem

For a wide-sense stationary process, 
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Here we have done an integration variable substitution 
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Let us consider the power spectrum of a signal
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. Assuming that f is uncorrelated at different points but correlates with itself at the same point, i.e.,
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(i) Let 
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(ii) If 
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Both cases indicate the uncorrelated stochastic process 
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 to have a white power spectrum.


An application example


Consider again an imaging system with a point spread function 
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At any instant of time, the net phase 
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 at the normalized lateral displacement point 
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 on the pupil can be decomposed to be
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where 
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denotes a deterministic contribution from the imaging lens which is constant in time;
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is random in time due to the turbulence. Therefore, the transfer function in the image plane can be expressed as
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Due to a long-time exposure, the time averaged transfer function shall become
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indicating that we need to know the statistics for 
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obeys the central limit theorem, leading to that 
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is strict-sense stationary for two points 
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Based on these results, we can further deduce
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Correlation of the phases at two points depends only on the distance between the two points. 


Based on these findings, the average transfer function becomes
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For a numerical estimation, let us assume
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3.4 Transfer Theorem for Power Spectrum

Consider an image formation process 
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(i) If 
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To answer the question, note first
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Here the modulus transfer function 
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This result provides a simple way to determine 
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We consider an object formed by two point sources locating at 
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In the following figure, we show a typical speckle pattern from a short-exposure image of a single star
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(ii) If 
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 is a stochastic process, for example, a telescope is repeatedly imaging an object 
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Note that
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This equation suggests that the autocorrelation of the image spectrum contains phase information about the object and therefore provides a simple way to retrieve the phase of the object from the observed images.

3.5 Noise

Noise n(x) in a signal can be defined as any departure of the measured signal (i.e., the data) d(x) from its ideal value (i.e., the true signal) s(x): 
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If both s and n are stochastic processes with each obeying arbitrary probability laws 
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Here RVs 
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do not correlate at any x and x’, i.e., s and n are statistically independent RVs, then
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The noise 
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 is called additive noise.


Defining a joint probability density function of input s and output d at an arbitrary but fixed x: 
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Thus,
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Note that

1. signal 
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 usually has a strong correlation over some finite range of x; 


2. white noise 
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is uncorrelated in x, leading to 
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Wide-sense stationary noise 
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3.6 Ergodic Property

Let 
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 indicates the k-th particular set of 
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 k=1, 2, 3 …, N.

At any fixed x=xo, there is a probability law 
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for random values of n.
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A histogram built up of noise occurrences across curve 
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 (along x) should be identical to the probability law 
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is independent of xo).  This is the principle of Ergodic Theorem: 
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3.7 Optimum Restoring Filter

If 
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= blur due to deterministic spread function + additive noise.

By taking Fourier transform, we obtain
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We can construct a restoring filter function 
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An appropriate restoring filter
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can be found by defining
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By substituting 
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By a minimum mean-square error (mmse) criterion: 
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By taking Fourier transform,
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Thus, 
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[image: image172.wmf]()
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obtained by this criterion is called Wiener-Helstrom filter.


(i) If 
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(ii) If 
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, corresponding to an inverse filter.


Therefore, optimal Wiener-Helstrom filter does its job by rejecting high-noise frequency components and accepting low-noise components.


In the following we present the effect of an optimal Wiener-Helstrom filter. The input image was first blurred with a Gaussian filter using sigma=1. The bluured image was then degraded by an additive white noise (20% to that of maximum signal). The blurred and noisy image has pSNR=65.1 relative to the original image. The restored image with regulated direct inversion was shown in the third picture, which yields pSNR=56.3. Much better image with pSNR=77.1 can be restored using an optimal Wiener-Helstrom filter as long as the noise statistics was known. We can construct a Wiener-Helstrom filter without knowing the noise statistics to restore an image with pSNR=73.7, performance matching to that of the optimal Wiener-Helstrom filter.
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