
Chapter 2  Introduction to Probability Theory and 
Random Variables 

 

2.1 Definitions of the Terms 

2.1.1 Events and Event Space of an Experiment 

We define an experiment E to be a fixed procedure which can be repeated 

with a directly observable outcome. 

Each outcome is arbitrarily associated with an event An. Thus, the complete 

set of events {An} comprises an event space S. 

 

For example, E=roll a dice,  

{An}={A1, A2, A3, A4, A5, A6} or 

{Bn}={B1(roll<3), B2(roll=3), B3(roll>3)} 

 

2.1.2 Definition of Probability 

Associated with each possible event A of an experiment E is its probability 

of occurrence P(A). 

Three Axioms of Probability 



Axiom 1: ( ) 0P A  . 

Axiom 2: ( ) 1P S   for S=a certain event space. 

Axiom 3: If A and B are disjoint in an event space, then ( ) ( ) ( )P A B P A P B  or . 

 

An Intuitive Picture of Probability = frequency of occurrence f(B) of an event B. 

Consider an experiment is carried through a large number of times N, the number 

of occurrence of an event B is m. Hence  

( ) ( )f B frequency of occurence of event B m N  . 

Thus, based on the Law of Large Numbers, we can determine the probability of 

event B as ( ) ( )    
N

f B probability of the event B Lim m N


  . 

 

2.1.3 Definitions of Marginal Probability and Conditional 

Probability 

Consider a joint event (denoted as AmBn) from Am and Bn. If {Bn} be disjoint 

and form an event space (i.e., S={B1 or B2 or B3 or ……BN}), then the event Am can 

be viewed as a joint event of Am and {B1 or B2 or B3 or ……BN}: (Am and B1) or  

(Am and B2) …….or  (Am and BN) .  

 

 

 

 

 



We can therefore define the marginal probability of Am as 
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The conditional probability of event B if event A already occurred can be defined 

as  ( | ) ( ) ( )P B A P AB P A . 

However, if knowledge of event A has no effect upon the occurrence of B, P(B | A) 

=P(B), then events A and B are called statistical independent. That is P(B | A)= 

P(AB)/P(A)= P(B). Therefore, P(AB)=P(A)P(B) ( Noted that this is a necessary 

condition for statistical independent). 

 

The following probability laws can be proposed 

 Partition Law: If {Bn} be disjoint and form an event space, 

1

( ) ( | ) ( )
N

m m n n
n

P A P A B P B . 

 Bayes Rule:  

Since ( ) ( )P AB P BA , thus 
( | ) ( )

( | )
( )

P A B P B
P B A

P A . 

If { } disjoint and form an event spacen mB B  , then 

( | ) ( ) ( | ) ( )
( | )

( ) ( | ) ( )
n n n n

n
m m

m

P A B P B P A B P B
P B A

P A P A B P B , indicating that we only require 

knowledge of quantities P(Bn) and P(A | Bn). 



See the webpage for Bayes rule application in model fitting, 

https://users.fmrib.ox.ac.uk/~saad/ONBI/bayes_practical.html, or the workshop 2 

of this course. 

Application of Bayes rule 

Assuming the probability of a certain medical test being positive is 90%, if a 

patient has disease D. A prior knowledge of the disease is that about 1% of the 

population has the disease, and the test records a false positive 5% of the time. 

Estimate the probability of having D if a test is positive. 

Reformulate the question as follows: P(+|D)=0.9, P(D)=0.01, P(+|no D)=0.05, 

calculate P(D|+)=? 

From Bayes rule,
( | ) ( ) ( | ) ( )

( | )
( ) ( | ) ( ) ( | ) ( )

P D P D P D P D
P D

P P D P D P no D P no D

 
  

   
. 

Substituting in the numbers, we obtain P(D|+) = 0.15, indicating that the prediction 

power of the positive test is not so high! 

 

We can apply Bayes rule to create a machine learning system that can 

refine a model M in the light of the experimental data D, starting from a set of a 

priori knowledge (or assumptions) C. To do that, the first step is to define a 

conditional prior probability P(M | C) for a model M (with some model parameters, 

which are to be refined) based on the initial assumptions from a priori knowledge 

C. Next, we update P(M | C) in response to the experimental data (D) to give the 

posterior probability P(M | D and C). The Bayes theorem can be used to offer an 

estimate of the posterior probability: 

https://users.fmrib.ox.ac.uk/~saad/ONBI/bayes_practical.html


( | ) ( | , )
( | , )

( | )
Prior : ( | )

Likelihood Probability : ( | , )
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For this rule to be applicable, it must be possible to define the likelihood P(D | M, 

C) that the experimental data D are consistent with the model M and the prior 

assumptions C. The algorithm to implement a Bayesian estimator is typically as 

follows: 

(i). Redefine the previous a posterior probability 1 1( | )k kP M D C  as the new prior 

probability via 1 1( | ) ( | )k k kP M C P M D C  . 

(ii). Record the measurement at time k, kD . 

(iii). Calculate the likelihood ( | )kP D M C  from the model. These could be 

precomputed, analytically or numerically. This likelihood depends upon the form 

of the assumed model, which is not necessarily Gaussian. 

(iv). For the sake of efficiency, one may want to adjust the numerical range and 

resolution of M considered. 

(v). Compute the new (unnormalized) a posterior probability via 

( (( )| || )) kk kP M P DP M D C C M C . 

(vi). Normalize to get the new a posterior probability ( | )kP M D C . 

(vii). Calculate the estimate of the model variables M  based on the new a posterior 

probability. This choice can be made in several ways, but the simplest approach is 

to take the maximal value location. 

(viii). Repeat at time k+1. 



 

This algorithm is the essential core of Bayesian estimation, which becomes very 

useful since most of the time we do not know what posterior probability is.  

Bayesian estimation gives a relatively simple way to calculate a posterior 

probability by multiplying the likelihoods and prior distribution. If we use the point 

at which the overall likelihood is maximal as our estimate, we are performing 

maximum likelihood estimation (MLE). Similarly, we can implement a Maximum a 

Posteriori (MAP) solver to find a solution, which will maximize the posterior 

probability. 

 

Application Example of Probability in Optics 

 

Now, let’s use an optical imaging system as depicted above to illustrate the concept 

of probability in optics. First define an object function ( )no x  in the object plane as 

( )
( )

( )

n n
n

n n

n

O x x
o x

O x x





= photon is emitted from an interval of nx  at xn divided by 

total number of emitted photons from the object  = ( )nP x . 



Similarly, the total probability of photons incident on an interval of 
my centered at 

ym can be described as 
( )

( ) ( )
( )

m m
m m

n n

n

I y y
P y i y

I y y

 
 


. 

The point spread function of an optical system can be modelled by a conditional 

probability ( ; )m nS y x , which can be defined as  

( ; )m nS y x conditional probability ( | )m nP y x  that the photon emitted by the object 

at the position xn will arrive at ym on the image plane. 

Based on Bayes rule, we obtain
( | ) ( )

( | )
( )

m n n
n m

m

P y x o x
P x y

i y


 , which can be 

identified as an inverse point spread function of the system. 

 

2.1.4 Markov Events 

If the occurrence probability of an event changes from trial to trial and 

depends upon the outcome of the preceding trial, the sequence of events is called 

Markov events. 

For example, two products A and B are competing for sales. Due to the better 

quality of product A, we found 1( | ) 0.8n nP A A   and 1( | ) 0.4n nP B B  . By 

using Axiom 2 of 

probability 1 1 1 1( | ) ( | ) 1, ( | ) ( | ) 1n n n n n n n nP A A P B A and P A B P B B       , we then 

have 

1 1

1 1

( | ) 0.8 ( | ) 0.2

( | ) 0.4 ( | ) 0.6

n n n n

n n n n

P A A P B A

P B B P A B

 

 

  

  
. 

For , ( ) ?n P A   



 

To solve the question, we first apply the Partition Law of Probability: 

1 1 1

1 1 1

( ) ( | ) ( ) ( | ) ( )

0.8 ( ) 0.6 ( )

( ) ( | ) ( ) ( | ) ( )

0.2 ( ) 0.4 ( )

n n n n n n n

n n

n n n n n n n

n n

P A P A A P A P A B P B

P A P B

P B P B A P A P B B P B

P A P B

  

  

 

 

 

 

 

As n  

( ) 0.8 ( ) 0.6 ( ), ( ) 0.2 ( ) 0.4 ( )P A P A P B P B P A P B      and  

( ) ( ) 1P A P B  . 

Therefore, we determine ( ) 0.75, ( ) 0.25P A P B  . 

 

2.2 Continuous Random Variables 

2.2.1 Definition of a Random Variable (RV) 

Definition of a random variable U:  By examining the outcome of an experiment E, 

we assign a number (real or complex) u(An) to every possible elementary event An. 

Thus, a random variable U consists of all possible {u(An)} together with an 

associated measure of their probabilities P(An). 

Probability distribution function FU(u) of a RV U: FU(u)=Probability{U u }. 

Axiom 1: ( ) 0 ( )UP A F u   is nondecreasing to the right. 

Axiom 2: ( ) 1 ( ) 1UP C F     and ( ) 0 ( ) 0UP N F    . 

Therefore,    



0

( ) ( ) ( )
( ) , limU U U

U
u

F u F u F u u
P u probability density function pdf

u u 

   
  

 
. 

For a discrete RV {uk}={u(Ak)}, we can express the associated pdf as 

1

( ) ( ) ( )U k k

k

P u P u u u




  . 

 

2.2.2 Statistical Average and Moments of a Random Variable 

If U is a RV, 

,
function
mapping g

 g(U) is also a RV. 

Note:  

( ) [ ( )] ( ) ( ) ( ) ( ) ( )

( ( )) [ ( )] ( )

U n n

n

discrete

n U n

n

g u E g u g u P u du g u P u u u du

g u A P u A statistical average of g u


 

 
   



 


. 

 If ( ) ng u u ,  
_____

( )n

U
n u P u duu




   n-th moment 

 If ( ) ( )ng u u u  , [( ) ] ( )n nE u u u u   n-th central moment. When 

n=2, 
2 2( )u u    variance=2nd central moment with =standard deviation. 

 If 1 2

1

( , ,..., )
N

N i i

i

g u u u a u


 ,  then 

1 1

1

[ ] ... ( ,..., ) ...
N

i i i i N N

i i

g E g a u a u P u u du du


      

 



Application Example of Probability in Optics 

Consider an imaging system, 

 

0
0

( ) ( ; ) ( ) ( ) ( ; ) ( )m m n n
xn
y

i y S y x o x i y dx s y x o x



 
 

     

The point spread function (PSF), 
2( ) sinc ( )

ka ka
S y y

F F
 , is in fact a probability 

density function for position y of a photon in the image plane if it originates at a 

point located at the origin in the object plane.  

The moments of a random variable are 

2

1 ( ) sinc ( ) 0
ka ka

m y y S y dy y y dy
F F

 

 
      

2 2

2 ( )m y y S y dy



    . 



(i) 
1

( ) ( ; ) ( )
N

m m n n

n

i y S y x o x


 : If ( )no x  is a RV (e.g., a randomly selected 

member of a set of objects), then ( )mi y  is also a RV and 

1

[ ( )] ( ; ) [ ( )]
N

m m n n

n

E i y S y x E o x


 . 

(ii) If ( ; )m nS y x  is a RV (e.g., an object is imaged repeatedly through 

atmospheric turbulences, a speckle pattern will be generated from 

( ; )m nS y x ), then 
1

[ ( )] [ ( ; )] ( )
N

m m n n

n

E i y E S y x o x


 . 

 

2.2.3 Useful Probability Laws in Optics 

A. Poisson Distribution 

( ) 0,1,2,.... 0
!

n
a

n n

a
P A p e n with a

n

    . 

Here a is the sole parameter of Poisson distribution, which determines the mean, 

variance, and even the third central moment. 

This probability law arises for n photon arrivals over a time interval T if the 

photons (1) arrive uniformly (with an average arrival rate of a/T ) and randomly in 

time; (2) arrive rarely; and (3) arrive independently. 

 

B. Binomial 

The binomial law arises under the same circumstances that produce the Poisson law. 

However, it does not require rare events, as does the Poisson. 



 

( ) , 1n N n

n n

N
P A p

n
    

    
 

 

The average and central moment can be 

calculated as 

0

n

n

n n p N




   ,  
2 N  . 

C. Uniform 

1
( ) Re ( )

x a
P x ct

b b


 .                   

The average and 2nd central moment can be 

calculated to be 

2 2, 12x a b  . 

This probability is useful to depict the photon 

statistical law at position x on a uniformly bright 

object. 

 

D. Exponential 

1
0

( )

0 0

x ae x
P x a

x




 
 

.               

The average and 2nd central moment can be calculated to be 

2 2,x a a  . 



This law arises as the probability density for an intensity (a random variable) x=I in 

laser speckle, with a  mean intensity I a . 

 

E. 1-D Normal Distribution 

2 2( ) (2 )1
( )

2

x xP x e 



  . 

This is a very useful probability distribution due to the central limit theorem holds 

for most of the physical processes. For example, the optical phase after passing 

through atmospheric turbulance obeys a normal law. 

 

F. 2-D Normal Distribution 

2 2

2 2 2
1 21 2

( ) ( ) 2 ( )( )1
[ ]

2(1 )

2

1 2

1
( , )

2 1

x x y y x x y y

P x y e



   

  

   
  




, where  

___
2 2 2

1

___
2 2 2

2

____________________

1 2

( )

( )

( )( ) ( )

x x

y y

x x y y between Rcross correlation Vs x and y





  

 

 

   

. 

 

2.4 Fouriers Methods 

This section aims to introduce the Fourier analysis to RVs and probability theory. 

The basic concept is easy to understand by referring to the following analog 

 



Linear Optics                               Statistical Optics : Statistical nature of Optics  

 (Fourier Optics)              Fourier analysis on RV U and probability theory 

 Optical Signal ( )E k                        pdf ( )UP u  

 

2.4.1 Characteristic Function 

( ) ( ) i u

U UP u e du     characteristic function for RV U. 

 

pdf of a RV U at the value u 

 

u  forms a conjugate pair.  

Note: ( ) [ ]i u

U E e     with E[..]=statistical averaging. 

 

2.4.2 Applications of Characteristic Function 

A. Generating Moments 

Note: 0 0

( )
| [ ] | [( ) ] [ ]

n n
j u n n n nU

nn n
E e E ju j E u j m

 

 

 
 

 
   

 
. 

i.e., the behavior of ( )U  at the origin (=0) defines all the moments of ( )UP u . 

 

B. Describing RVs 

Note:  ( )URV u and P u . 



1
( ) ( )

2

j u

U UP u e d  


  , which is the inverse FT of characteristic 

function.  Thus, characteristic function can fully determine ( )UP u  and therefore the 

RV. 

 

Application Example of Probability in Optics 

 

The reduced coordinate  on the pupil plane 
2 y

ky f
f





   denoting the normal 

component of k when y is the transverse coordinate on the lens. 

s(x) = point spread function = |a(x)|2, where a(x)=Point amplitude function. 

From Huygens’ principle: 
0

0

( )

( )
( )

j k re
a x d

r












  . 

By noting that 

2 2 2( ) [ ( )] | ( ) | | ( ) |r y x f and f y x         ,  

we can obtain 
0

0

( )( ) j k j xa x e d


 





 


  . 



 

The optical transfer function (OTF) T( ) of the system can also be deduced to be 

0

0

( ) ( )

0

1
( ) ( ) ( ) [ * ]

2

j x jk jkT s x e dx s x dx e e d


   

 
 



 

   


 

     

= convolution of the pupil function 
( )jke 

. 

 

Let ( )k u   , we find 
( )( ) [ ] [ ]j u jk

U E e E e     , denoting 

that ( )U  is an average amplitude of the field with a random fluctuating phase 

front. 

( ) [ ( )]T FT s x   and s(x)= probability law of photon position on the image plane. 

Thus, T( ) can be understood as the characteristic function for probability law s(x). 

 

2.4.3 Shift Theorem 

 For a random variable U, we can generate a RV W as  

W aU b . 

Therefore, we deduce the characteristic function of W as 

( ) ( )( ) [ ] [ ] [ ]

( )

jwu jw au b jwb j wa u
W aU b

jwb
U

w E e E e e E e

e aw . 

 

2.4.4 Characteristic Functions for Some Probability Laws 

(a) Poisson 



Let 
0

( ) ( )U n
n

p u p u n and  0,1,2,.... 0
!

n
a

n

a
p e for n and a

n

   .  

Then the corresponding characteristic function becomes 

( )

0

( ) ( ) [ ]
!

jw
n

jwu a jwn a ae
U U

n

a
w e p u du e e e e

n . 

We can then use ( )U w  to obtain the successive moments of the Poisson RV U. 

(b) Binomial Law 

Similarly by use of  

0

( ) ( )
N

jwn n N n jw N
U

n

N
w e e

n , where 1 . 

By use of the characteristic function, we obtain 

1
1 0 0

( )
( ) ( )jw N jwU

w w

w
m first moment j jN e j e N

w   

and 

2 2m nd central moment N . 

 

(c) Uniform Case 

Here we just list the result for the characteristic function for the uniform RV with 

1
( ) Re ( )

x a
P x ct

b b


 ,  



( ) sinc( )
2

jwa
U

bw
w e . 

 

(d) Exponential Case 

The characteristic function for the exponential law 

1
0

( )

0 0

x ae x
P x a

x




 
 

 

is 
1

( )
1U w jwa . 

 

(e) 1D Normal Distribution Case 

The characteristic function becomes 

2 2 2
( ) ujwu w
U w e where  

u first moment  and 
2 2u nd central moment . 

 

(f) 2D Normal Distribution Case (two correlated, bivariate RU) 

Let 1 2{ , ,..., }NU U U U be a N-dimensional RV, then 

the corresponding characteristic function becomes 

1 2( ) ( , ,..., ) ( )j u
NU U Udu e p u . 

For 2D normal case, 1 2{ , }U U U  



2 2 2 2
1 1 2 2 1 1 2 2 1 2 1 2

1 2

1
( 2 )

2

( , ) ( )j u
U U

j u j u

du e p u

e
 

1 2correlation coefficient betweenU andU . 

We will apply this result to find the long-term average optical transfer function due 

to turbulence. 

 

2.4.5 Probability Law for the Sum of Two Independent Random 

Variables 

Let U and V be two statistically independent RVs. If W=U+V, W will be a RV too. 

But what is the corresponding pdf, ( )Wp w ? 

Note that  

 
. .( )( ) [ ] [ ] [ ] [ ] ( ) ( )S Ij w j u v j u j v

W U VE e E e E e E e . 

Take an inverse Fourier transform of ( )W , 

1
( ) ( ) ( ) ( )

2
( ) ( )

j w j w
W W U V

U V

p w e d e d

p w p w
. 

If U and V are two statistically independent ( . ., 0i e ) Gaussian RVs, then W is 

a Gaussian RV too and 

2 2 2( ) /2( ) u v
W e ,  i.e., ( )Wp w  will be broader than Up  and Vp . 

 



Now let us consider an image formation system, where 

( )o x = probability of photons emitted at x in the object plane, and  

( )i y = probability of photons arrived at y in the image plane. 

Let x, y be RVs, and y=x+(y-x), so (y-x) is also a RV, which denotes an incremental 

displacement to the side with a probability density law of s(y; x). 

If (y-x) is statistically independent of x, which is valid when object is small, then 

( ; ) ( )s y x s y x . This condition is called isoplanatism in image forming theory, 

or is called strict-sense stationary in statistical theory. 

Thus, ( )y x y x   is a RV → ( ) ( ) ( )i y s x o x  is the associated 

probability law. 

It is interesting to ask:  

Is it possible to make ( )s x negative going such that ( )i y  is narrower than ( )o x ? 

The answer is Yes, which is essentially an image enhancement or restoration 

procedure. 

 

What are the resulting mean and variance of the sum of N statistically independent 

RVs ?  

Assume { }mU  in 1 2 ... NW U U U to be statistically independent and 

normal. 

Thus, 1 2
( ) ( ) ( )... ( )

NW U U Uw w w w with  

2 21

2( )
m m

m

j u

U e .  



We obtain 

2 2

1 1

1

2( )

N N

m m
m m

j u

W e , indicating that W is also a normal RV with  

1

N

m
m

W u  and  
2 2

1

N

W m
m

. 

 

In general, { }mU can be statistically independent and follows any distribution, 

1

N

m
m

W u  is a normal RV and  
2 2

1

N

W m
m

. 

 

2.4.6 Central Limit Theorem 

Let us assume { }mU to be 

(1) n statistically independent RVs, obeying 

(2) identical characteristic function ( )U w  .  

We first define 1 2 ... nW U U U , and will prove ( )Wp w  to become 

Gaussian when n . 

For simplicity, let us assume the means of all { }mU  to be zero. Then, we have 

2
' " 3

2 2
3

( ) [ ( )] [ (0) (0) (0) ]
2

[1 ]
2

n n
W U U U U

u n

w
w w w w

w
w

. 



Defining a new RV S as 

1 2 ... nU U UW
S

n n n n
 and by using the Shift theorem, we find the 

corresponding characteristic function of S as 

2 2 3

3 2
( ) ( ) [1 ]

2
nu

S W

w w
w w n

n n
. 

Let us calculate the logarithmic function of ( )S w , 

2 2 3

3 2
ln ( ) ln(1 ]

2
u

S

w w
w n

n n
. 

When n , 

2 2 4 4 2 23

3 2 2
ln ( ) ln(1 ( ]

2 2
u u u

S

w w ww
w n O

n nn
. 

2 2

2( )
u wn

S w e . 

In fact, { }mU  do not have to all obey the same probability law and they do not all 

have to be independent. 

 

Optical Application of the Central Limit Theorem 

We can apply the central limit theorem on modeling the effect of atmospheric 

turbulence. 

The light wave from a distant star behaves like a planar wavefront near the Earth.  

Let us first divide the atmosphere of the Earth along the optical path into N slabs 

with an index of refraction nm and thickness ∆tm in the mth slab. The phase delay of 

the wavefront after reaching the ground can be approximated by 



2
m m mn t  with nm denoting the random index of refraction of the mth 

plane and c∙∆t being the thickness. We note that { }m  form a set of RVs with 

1

N

net m
N

m

Gaussian RV .   

Thus, ( )netp  is Gaussian probability, and ( ( ), ( '))net netp t t  a bivariate 

Gaussian. 

 

2.5 Functions of Random Variables 

 

2.5.1 Single RV 

Let ( )W f U  and U be a RV with a known pdf ( )Up u . The inverse function 

1( )u f w can possess either (A) a unique root u1 or (B) a multiplicity of roots u1, 

u2,..., ur. 



 

(A)We first consider the case with unique root. 

 

Now convert the event space of { }wA w W w dw  into 

{ }uA u U u du . For each event in wA , it may be alternatively described 

as a corresponding event in uA , i.e., ( ) ( )w up A p A . The relative number of times a 

value w will occur equals the relative number of times the corresponding value of u 

will occur. Therefore, 

1
1 [

( ) ( ) [ ( )
( )]

( )] U
W U WU

du p
p w dw p u du p f w dw

u f w
p w

dw

u

dw

d

. 

Application Example in Optics 

Consider an imaging system with a simple 

lens 
1 1 1

y x f .                    

If ( )Xp x is known for an object, then 



1( )
f y

x f y
y f  and 

2

2

( )y fdy

dx f
, leading to 

2

2
( ) ( )

( )
Y X

f fy
p y p

y fy f
. 

 

If 

1 3 5
,

( ) 2 2
0,

X

f f
x

p x f
for all other x

, therefore 

2

5
, 3

2( ) ( )
0,

Y

f f
y f

p y y f
elsewhere

. 

 

 

(B) Next, consider the case with multiple roots 

For example, for optical detection with a square-law detector 2W U , we have 

U W . Therefore, 
1 2

( ) ( ) ( )W U Up A p A p A , which yields 

1 2

1 2( ) ( )
( ) U U

W

u u

p u p u
p w

dw dw

du du

.  

Here 1 2u w and u w  

          



1

2

1

2

2 2

2 2

u

u

dw
u w and

du
dw

u w
du

.  

Thus, we have 
( ) ( )

( )
2 2

U U
W

p w p w
p w

w w
.  

If  

2

221
( )

2
u

u

U
u

p u e , then 

221
, 0

( ) 2

0, 0

u

W u

w

e w
p w

w

w . 

 

Now let us consider N random variables 1 2{ , ,..., }NU U U U  with a known joint 

probability 1 2( , ,..., )NU
p u u u . We first perform a functional mapping with  

1 2{ , ,..., } ( )NW W W W f U  and want to know what is the pdf of W .  

To find the answer, let us assume 1( )U f W  to possess r roots for each RV 

1 2: , ,...,m m m mrU u u u . 

For simplicity, let N=2, r=2, by following the general transformation rule: 

1 2 1 2( , ,..., ) [ ( ), ( ),..., ( )]N NW U
p w w w J p u W u W u W , we obtain 

1 2 11 21 11 21 11 22 11 22

12 21 12 21 12 22 12 22

( , ) ( , ) ( , )

( , ) ( , )
W U U

U U

p w w p u u du du p u u du du

p u u du du p u u du du . 

 

Application Example in Optics 

Consider a light amplitude u which is composed of N random phasors 



1

1
k

N
jj

k
k

u ae R jN e
N

. 

To deduce useful conclusions, we make some assumptions: 

(1) k N  and k  are statistically independent; 

(2) The RV k  is identically distributed for all k with mean  and 2nd moment 2 ; 

(3) The RV k  is identically distributed in , .  

 

Based on these assumptions, and  

1

1
cos

N

k k
k

R
N

, 
1

1
sin

N

k k
k

I
N

,  

we have 

1 1

1 1
cos cos cos 0

SIN N

k k k k
k k

R N
N N

 

1 1

1 1
sin sin sin 0

SIN N

k k k k
k k

I N
N N

 

and 

2
2 2

1 1 1 1

1 1 1
cos cos

2 2

N N N N

k n k n k n kn
k n k n

R
N N  

2
2 2

1 1 1 1

1 1 1
sin sin

2 2

N N N N

k n k n k n kn
k n k n

I
N N . 



Because correlation between r and i is 0 , we obtain 0RI . 

According to the central limit theorem, we have 
2 2 2( ) (2 )

2

1
( , )

2

N
R I

rip R I e . 

Let 
2 2 1, tan ( )a R I I R  (i.e., cos sinR a I a ) 

cos sin

sin cos

R R
aaJ a

I I a

a

. 

The joint probability becomes 

2 2(2 )

2
,

( , ) ( cos , sin ) 2
0 ,

a

ri

a
e

p a p R a I a a
otherwise

. 

Form the joint probability density function, we can deduce the marginal probability 

of A to be 

2 2(2 )

2
, 0

( ) ( , )
0 ,

aa
e a

p a p a d
otherwise

,  

which is also noted to be Rayleigh density function. Similarly, for the marginal 

probability of , we have 

 0

1
,

( ) ( , ) 2
0 ,

p p a da
otherwise

 . 

 


