
Chapter 1b  Overview of image formation  
 

(If you are not familiar with Fourier Optics, try to catch up by reading 
Goodman’s Introduction to Fourier Optics) 

 

 
 
 

 

 
 



Topics to be discussed in the following Section 
 

→ linear shift invariant (LSI) systems in the representations of real 
space and spatial frequency 
→ mathematical properties of Fourier transform 

 

 
 
 

                  

 
 

Monochromatic wave field in the spatial frequency domain 



 

 
 
 

Note:  The spatial frequency representation above describes the intersection of a 
plane wave with the x,y,z=0 plane at t=0 – it is not a plane wave, nor is it a 

solution of the EM Wave equation. 
It is a static 2-D function that changes sinusoidally in a particular direction with a 
particular cycle length.  In the Discrete Fourier Transform, each spatial frequency 
has an integral number of cycles over the array. 
 
 
An example of a spatial frequency function is shown in two views below: 

 

 
 
 



 
 

Fourier transform properties /2 
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Spatial frequency representation 

       
                         g(x, y)                                             Fourier domain: 
                                                                          G(u, v)=F{g(x, y)}      

Low-pass filtering 
                                                          Removed high-frequency content 

    
 

 



 
 

 
• Coherent image formation 
– space domain description: impulse response 
– spatial frequency domain description: coherent transfer function 
 

 
1. Point source at the origin ↔ delta function δ(x, y) 
2. h(x’, y’) is the impulse response of the system. More commonly, 
h(x’,y’) is called the Coherent Point Spread Function (Coherent 
PSF). 

 



 

 

 



4f optical imaging system with an aperture on the focal plane 
 

 
In this case, image is blurred by the low-pass filtering effect of a finite 
aperture locating on the focal-plane. 
 

 
Note: circ=@(ri) (abs(ri)<=1.) 
 



 

                                             
 
 
The transfer function of an 4f imaging system with a rectangular 
aperture in the Fourier plane:    

 
 
The image formed with an aperture-limited spatial filtering can be 
depicted with 
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See: cohImaging.m and incohImaging.m 



 
 
 
 

 
 
 



 
 
 

 
 
 
 



 
 
 

 
 
 
 



 
 

 
 

 



 
 
 
 

 

 
 



 
 
 
 

 
 
 



 

 
 
 



 
 

 

 



Astigmatism 

   
 
 
 

 
 



 
 
 
 

 



Variation of PSF in the image plane 

 
 



 

 
 
 

 
 
 

 



For incoherent imaging 
Clear-aperture MTF                                  iPSF 

              

 

 
 



 
 
 
 
 

 



 
 

 

Therefore, it is meaningful to combine image processing function 

with imaging optics to enhance imaging functionality. 



See: Thrufocus.m and ThrufocusEDOF.m 
 

MTF and PSF invariant to defocus via 
Wavefront Coding
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Chapter 1b  Overview of image formation 

(If you are not familiar with Fourier Optics, try to catch up by reading Goodman’s Introduction to Fourier Optics)
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Topics to be discussed in the following Section


( linear shift invariant (LSI) systems in the representations of real space and spatial frequency

( mathematical properties of Fourier transform
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Monochromatic wave field in the spatial frequency domain
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Note:  The spatial frequency representation above describes the intersection of a plane wave with the x,y,z=0 plane at t=0 – it is not a plane wave, nor is it a solution of the EM Wave equation.

It is a static 2-D function that changes sinusoidally in a particular direction with a particular cycle length.  In the Discrete Fourier Transform, each spatial frequency has an integral number of cycles over the array.


An example of a spatial frequency function is shown in two views below:
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Fourier transform properties /2
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Spatial frequency representation
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                         g(x, y)                                             Fourier domain:


                                                                          G(u, v)=F{g(x, y)}     

Low-pass filtering

                                                          Removed high-frequency content
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• Coherent image formation


– space domain description: impulse response


– spatial frequency domain description: coherent transfer function
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1. Point source at the origin ↔ delta function δ(x, y)


2. h(x’, y’) is the impulse response of the system. More commonly, h(x’,y’) is called the Coherent Point Spread Function (Coherent PSF).
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4f optical imaging system with an aperture on the focal plane
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In this case, image is blurred by the low-pass filtering effect of a finite aperture locating on the focal-plane.
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Note: circ=@(ri) (abs(ri)<=1.)
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The transfer function of an 4f imaging system with a rectangular aperture in the Fourier plane:   
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The image formed with an aperture-limited spatial filtering can be depicted with
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[image: image34.png]Imaging with incoherent light
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See: cohImaging.m and incohImaging.m
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[image: image58.png]Diffraction—limited resolution (safe)

Two point objects are “just resolvable” (limited by diffraction only)
if they are separated by:

Two-dimensional systems One-dimensional systems

(rotationally symmetric PSF) (e.g. slit-like aperture)

Safe definition: .

(one-lobe spacing) ' =

Pushy definiti
ushy definition: o

(1/2-lobe spacing)

You will see different authors giving different definitions
Rayleigh in his original paper (1879) noted the issue of noise
and warned that the definition of “just-resolvable” points
is system— or application —dependent






[image: image59.png]Also affecting resolution: aberrations
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Astigmatism
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Variation of PSF in the image plane
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For incoherent imaging


Clear-aperture MTF                                  iPSF
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[image: image75.png]Common misinterpretations

Attempting to resolve object features smaller than the
“resolution limit” (e.g. 1.22A/NA) is hopeless

Image quality degradation as object
) features become smaller than the
° resolution limit (“exceed the resolution

limit”) is noise dependent and gradual.






See for example, Sripad Ram, E. Sally Ward, and Raimund J. Ober, Beyond Rayleigh’s criterion: A resolution measure with application to single-molecule microscopy, Proc. Natl. Acad. Sci. 103, 4457–4462 (2006).
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Therefore, it is meaningful to combine image processing function with imaging optics to enhance imaging functionality.

See: Thrufocus.m and ThrufocusEDOF.m
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MTF and PSF invariant to defocus via Wavefront Coding
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Defocused PSFs observed at different image planes for various phase filters
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