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Abstract:  The population-split genetic algorithm (PSGA) was successfully 
applied to retrieve femtosecond optical fields from interferometric 
autocorrelation traces. PSGA strikes a balance between diversity and the 
size of population in the genetic algorithm. As a result, PSGA is less likely 
prematurely converging to sub-optimal solutions. Theoretical and 
experimental studies indicate that the PSGA can yield more accurate results 
in shorter time compared with conventional genetic algorithm and the 
iterative method.  
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1. Introduction  

In order to generate and utilize ultrafast light pulses effectively, complete information about 
their optical field (amplitude and phase) must be available. A number of approaches to fully 
characterize femtosecond pulses from experimentally measurable quantities have been 
developed [1-7]. These include techniques such as the popular frequency resolved optical 
gating (FROG) [1] and spectral phase interferometry for direct electric-field reconstruction 
(SPIDER) [2]. For many applications, however, pulse-width and frequency chirp are 
monitored by simply taking the second-order interferometric autocorrelation (IAC) trace [3]. 
A related technique, phase and intensity from correlation and spectrum only (PICASO) was 
proposed and demonstrated to characterize ultrashort pulses without any time ambiguity [4]. 
More recently, the modified-spectrum autointerferometric correlation (MOSAIC) was 
developed to measure ultrashort pulse chirp [5,6].  

Retrieval algorithms are required to extract complete phase information for all the 
above techniques. SPIDER utilizes, for example, a noniterative inversion routine that directly 
retrieves the phase from data by a series of linear transformations [2]. FROG, on the other 
hand, typically reconstructs pulse information by using an iterative algorithm based, for 
example, on the method of generalized projections [7], although a number of other algorithms 
and a composite algorithm have also been described [8]. In the case of second harmonic 
generation (SHG) FROG, Nicholson, et al. [9] showed that the genetic algorithm (GA) 
returned a lower error than the standard iterative composite algorithm. Other retrieval 
techniques, such as simulated annealing, have been demonstrated for retrieval of the pulse 
amplitude and phase from cross-phase modulation spectrograms [10]. With the reconstruction 
of the intensity profile from the autocorrelation trace, the Gerchberg–Saxton algorithm can be 
used to retrieve the phase of the electric field from a spectral measurement [11]. Several 
search algorithms, a simplex method, Powell’s method and GA have been found suitable for 
PICASO [12]. Bender et al. [6] employed an improved real-time Fourier-transform algorithm 
[13] for MOSAIC. Previously, we reported a freezing phase algorithm (FPA) for adaptive 
coherent control and optical field characterization with a single apparatus [14].  

It is highly desirable to have an efficient phase-retrieval algorithm with fast searching 
speed, high accuracy, and sufficient flexibility. Genetic algorithm, which is a global searching 
method based on ideas extracted from biological evolution, possesses advantages such as 
flexible searching ability and low likelihood to prematurely converge at a sub-optimal 
solution. The basic idea is that individuals with high fitness are the likely survivors in a 
challenging environment. During the evolution, the genetic information coded in the 
chromosomes can be changed by genetic operators such as crossover and random mutation. 
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       In ultrafast-optics-related applications besides pulse characterization, a GA-based 
adaptive control scheme has been employed to investigate the quantum evolution of complex 
systems [15-17]. GA had been successfully employed to tailor a coherent optical field for 
preparing specific quantum states on the basis of fitness information [18, 19]. Nonetheless, 
GA has several shortcomings: Its trial-and-error procedure often leads to long convergence 
time. It is also prone to stall on a local extremum. GA must also be implemented with a 
sufficiently large population to preserve diversity. A “thinning-out” GA method was proposed 
and demonstrated for improving the convergence speed of a GA-based optimization of the 
pulse shaping technique [20]. We also showed learning GA evolves more quickly to more 
accurate designs of multiband-transmitting Bragg grating filters [21]. It was used to retrieve 
ultrafast laser pulse parameters from a simulated SHG-FROG trace [22]. The population-split 
genetic algorithm (PSGA) reported in our previous work [23] was used as a tool for evolution. 
It is shown that PSGA can yield more accurate solution in shorter period by using a smaller 
population size. The idea of population-split genetic algorithm (PSGA) originates from the 
yeast’s strategy during evolution.  Yeast usually takes asexual reproduction to rapidly adapt in 
a benign environment, while it uses sexual reproduction to reproduce the offspring of different 
beneficial genotypes. This improves yeast’s probability of survival in a harsh environment 
[24]. 
       From an experimental point of view, one of the simplest and most practical techniques for 
pulse retrieval is the measurement of the first-order and second-order interferometric 
correlation traces. In this paper, we apply PSGA to retrieve femtosecond optical fields from 
interferometric autocorrelation traces. PSGA strikes a balance between diversity with the size 
of population in genetic algorithm. Theoretical and experimental studies indicate that the 
PSGA can yield more accurate results in shorter time compared with conventional genetic 
algorithm and iterative method. 

2. Methods  
 
The structure of the PSGA algorithm is illustrated in Fig. 1.  
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Selection Selection

Asexual reproduction

Sexual reproduction2

New population

Mutation

Sexual reproduction1

Initial population

Calculating fitness

Population1 Population2

Selection Selection

Asexual reproduction

Sexual reproduction2

New population

Mutation

Sexual reproduction1

 
 

Fig. 1. Schematic of the structure of the PSGA algorithm 

#70751 - $15.00 USD Received 9 May 2006; revised 8 September 2006; accepted 10 October 2006

(C) 2006 OSA 30 October 2006 / Vol. 14,  No. 22 / OPTICS EXPRESS  10932



       In each generation, typical genetic operators such as selection, crossover and mutation are 
used. As in conventional GA, PSGA employs a reproduction operator to emulate natural 
reproduction. Further, inspired by the yeast’s strategy of rapid adaptation in a benign 
environment, PSGA allows the individuals with high-fitness to transmit their genes via 
asexual reproduction. To improve the survival probability in a harsh environment, PSGA also 
implements sexual reproduction to reproduce the offspring of different beneficial genotypes 
[24]. 
       We have conducted a comparative study of PSGA, conventional GA, and iteration 
algorithm for pulse retrieval from interferometric autocorrelation measurements. Our 
procedure for phase retrieval from IAC is similar to that reported by K. Naganuma [13]. Input 
data are three Fourier moduli ⎢E(ω)⎢M, ⎢I(ω)⎢M, and ⎢U(ω)⎢M obtained from Fourier 
transformations of the measured autocorrelation functions ⎢G1(τ)⎢,⎢G2(τ)⎢, and ⎢FSH(τ)⎢, 
where the subscript, M, stands for measured values.⎢G1(τ)⎢ denotes the electric field 
autocorrelation function; G2(τ)and FSH(τ) are the intensity autocorrelation and second-
harmonic field autocorrelation functions, respectively. The amplitude and phase of the pulse 
are retrieved iteratively according to the flow chart shown in Fig. 2: 
 

 
 

Fig. 2. Flowchart for phase retrieval of ultrafast pulses from IAC using PSGA. 
 

       To begin with, an initial trial function in the frequency domain is prepared by assigning 
random phases to the given ⎢E(ω)⎢M from the square root of the experimentally measured 
spectrum, ⎢E(ω)⎢M 2  . The trial profile of the optical pulse in the time domain, Etry (t) can then 
be derived by the inverse Fourier transform of Etry(ω). By taking the squares of ⏐Etry(t)⏐ and 
Etry (t), Itry(t) and Utry(t) are obtained. The new power spectra of the fundamental and second-
harmonic pulses Itry(ω) and Utry(ω) are just the inverse Fourier transform of Itry(t) and Utry(t).  

As the phase retrieval loop proceeds, the trial function is iteratively refined. The errors 
in power spectra of the fundamental and second-harmonic signal, ZI and ZU, are defined to be 
the root-mean-square deviations of Itry(ω)and Utry(ω) from the measured spectral profiles. The 
error function Z (or its inverse the fitness function) can then be conveniently defined as 
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       Both the conventional GA and PSGA use a real codification with each real number 
corresponding to one spectral phase component of the electric field. In a typical run, a 
population of 18 individuals with different chromosomes is prepared. For phase retrieval of 
ultrafast pulses, the phase information of the optical pulse with squares of Fourier 
moduli⎢E(ω)⎢M, ⎢I(ω)⎢M, and ⎢U(ω)⎢M are coded by 101 spectral components. A single 
chromosome represents a potential solution to the phase retrieval problem with an accuracy 
revealed by the error function. Therefore, each chromosome shall consist of 101 genes.  
       For PSGA, the population is split into two subgroups according to the error function. The 
chromosomes with first four lowest errors (or higher fitness) are grouped into population 1 
and the remaining 14 chromosomes are assigned to population 2. Any individual in population 
1 is allowed to carry on the asexual reproduction. Sexual reproduction, which exchanges the 
genetic information between two individuals, is implemented with a non-uniform arithmetical 
crossover operator [25] and is allowed either within population 1 or between the two 
populations. For the selection process, a roulette wheel with slots size proportional to the 
fitness is used (i.e., the larger the fitness value is, the more likely it would be chosen). The 
mutation operator provides further random background variation in the components of the 
genes. Error function is evaluated for each produced offspring. The 18 individuals with the 
lowest values of error function are preserved for the next generation.  
       We have tested the PSGA with mutation rate, P, in the range of 0.01~0.1. Best 
performance was achieved with P ≈ 0.03. That is, every gene has a probability of 3% to 
mutate. In other words, 3 genes will mutate if there are 101 genes in one chromosome. 
Generally speaking, two kinds of mutations are possible: uniform mutation (Pum) and non-
uniform mutation (Pnm), for which the mutation rates are set to be Pum = 0.025 and Pnm = 
0.005, respectively, with P = Pum + Pnm = 0.03. For uniform mutation, the genes are assigned a 
random number ranging from –π  to +π . For non-uniform mutation, an additional value of 
Δ(t,y) = y.r.[1-(t/T)] is added or subtracted from the random number. The parameter “y” is one 
of the operators responsible for fine tuning capabilities of the PSGA algorithm. It is defined 
such that the function Δ(t,y) returns a value in the range [0, y] ensuring the probability of Δ(t,y) 
being close to 0 increases as t increases. This property causes the “y” operator to search the 
space uniformly initially (when t is small), and very locally at larger stages. In this work, y 
typically has the value 0.06; r is a random number lying in the range [0, 1]; t denotes the 
current number of generations for mutation; and T the total number of generations. The 
mutation operator can prevent PSGA from stalling at a local extremum. However, in order to 
guarantee fast convergence, the best chromosome is always preserved for the next generation.   
       In order to conduct a fair comparison, the same parameters, such as roulette wheel 
selection, non-uniform arithmetical crossover operator and uniform (Pum= 0.025) and non-
uniform (Pnm= 0.005) mutation, respectively, are used in both conventional GA and PSGA. 

3. Results and discussion 

An asymmetric pulse with a higher-order chirp in its phase profile is employed to test the 
performance of different algorithms. The pulse is generated in the time-domain using the 
expression 

#70751 - $15.00 USD Received 9 May 2006; revised 8 September 2006; accepted 10 October 2006

(C) 2006 OSA 30 October 2006 / Vol. 14,  No. 22 / OPTICS EXPRESS  10934



                            2 21 2( ) exp[ ( )] ( exp[ ( ) exp[ ( ) ])
t t t t

E t i t A B
T T

− −
= Ψ ∗ ⋅ − + ⋅ −                         (4) 

with a temporal phase profile 
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where the parameters for the test pulse are as follows: A = 0.7, B = 1, pulse duration T = 50fs, 
peak positions t1 = 45fs, t2 = 45fs, and a =  − 0.1, b =  − 0.09, c = 0.01. 

Figure 3(a) shows the electric field profiles retrieved by PSGA, conventional GA, and 
iterative algorithm, respectively. For the same target pulse, we find that the PSGA yields a 
solution with an error as small as 0.00125, while GA and iterative algorithm generate results 
with an error of 0.03266 and 0.11061, respectively. Figure 3(b) depicts the errors of different 
algorithms as a function of generation number from 0 to 1000. As we can see, PSGA has 
reached a solution with an error 10-3~10-2 in 300 generations, while GA and iteration either 
requires much larger number of generations or is trapped at a suboptimal solution with larger 
error. For PSGA, the selection pressure built up from the selection process for sexual 
reproduction within the population 2 is similar to that in conventional GA. But the selection 
pressure from the asexual reproduction within the population 1 and the selection process for 
sexual reproduction between the populations 1 and 2 are unique for PSGA. This additional 
selection pressure in PSGA may be the driving force to yield the optimal solution in shorter 
time. 
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Fig. 3.  (a) The target and the retrieved pulse intensities (log plot) and phases of 
a double-peaked pulse with complicated phase. (b) Error as a function of 
generation number for PSGA, conventional GA and iterative algorithms. 

 
The two-dimensional plots shown in Fig. 4(a) for PSGA and Fig. 4(b) for GA present 

the dynamic distribution of genes with the x-axis denoting the 101 genes (i.e., the spectral 
components of the optical pulse) and y-axis representing the 18 chromosomes (i.e., the 
different potential solutions to the phase retrieval problem).  
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Fig. 4.  Dynamic distributions of Genes at generation #3 for (a) PSGA and (b) 
conventional GA. The red line in Fig. 3(a), which marks the population splitting 
boundary, separates a region with much regular genetic organization from that 
with disordered genetic arrangement. 

 
       We order the chromosomes from 1 to 18 based on their fitness values. Chromosome 1 
denotes the retrieved result with best fitness while chromosome 18 is the poorest one. The 
color coding shows the temporal phases retrieved by the algorithm used. Random phases are 
used as the initial guess for both PSGA and GA. Therefore, the dynamic distribution of the 
genes shall appear random in the two-dimensional plot at the beginning. We select generation 
#3 to illustrate the genetic distribution at the very early stage of phase retrieval for PSGA and 
GA. The red line in Fig. 4(a), which marks the population splitting boundary, clearly separates 
a region with much regular genetic organization from that with disordered genetic 
arrangement. The more ordered genetic distribution in the region of chromosomes 1 to 4 in 
Fig. 4(a) originates from the combined operation of asexual and sexual reproductions. In the 
early generations, the chromosomes 1~4 from asexual reproduction can guarantee the fast 
convergence; the remaining chromosomes 5~18 from sexual reproductions will preserve the 
high diversity for next generations to avoid the premature convergence. Compared with the 
result at generation #1000, the steady state phase profile in this region can achieve a root-
mean-square (rms) error of 0.19 if genes with non-zero spectral intensity only are considered. 
In contrast, the genetic distribution of phases by conventional GA shown in Fig. 4(b) remains 
irregular. The difference of the two approaches is particularly striking for those genes with 
lower spectral intensity. 
       The comparison clearly indicates that PSGA, which specifically splits the populations and 
efficiently preserves the genetic information with better fitness, provides desirable features 
such as faster convergence and higher accuracy. Further, we note that PSGA works 
exceptionally well in retrieving asymmetric pulse with complicated phase profile while using 
a fairly small population size. It is well known that for GA, increasing the population size will 
increase the accuracy of phase retrieval while increasing population size causes the number of 
generations required for converging to increase. Small population size corresponds to less 
diversity and often causes GA to prematurely converge to sub optimal solution. In our 
problem the number of genes is as large as 101. The conventional GA with a population size 
of only 18 indeed prematurely converges to a sub optimal solution with a much higher error. 

We further apply the three algorithms to analyze experimentally measured IAC traces 
in order to verify the superior performance of PSGA in practice. The IAC traces used were 
measured with a linear/second-order interferometric-type autocorrelator. The optical pulses 
are from a mode-locked Ti: sapphire laser with pulse duration of τ = 25 fs at 90 MHz. Figures 
5(a) and 5(b) show the measured linear and second-order interferometric autocorrelation 
traces.  
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(a)                                                                                          (b) 

Fig. 5.  Measured (a) linear (b) second-order interferometric autocorrelation traces of a 25-fs 
pulse train at 90 MHz. 
 

       Figure 6(a) exhibits the intensity and phase profiles of the pulses retrieved from the 
correlation curves shown in Figs. 5(a) and 5(b). The intensity and the phase profiles deduced 
from PSGA are plotted as the solid curve. The results from the conventional GA and iteration 
method are shown as the dashed and the dotted curves, respectively. Figure 6(b) summaries 
the performance of PSGA, conventional GA, and iterative algorithm. The PSGA rapidly 
generates a solution with an error of 0.02833, the conventional GA and iterative method can 
only yield sub optimal results with error as large as 0.212 and 0.332.  
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Fig. 6.  (a) Intensity and phase of a 25-fs pulse train at 90 MHz retrieved by 
three different algorithms from target interferometric traces shown in Fig. 5. (b) 
Errors in the retrieved interferometric traces are plotted as a function of 
generation number for PSGA, conventional GA and iterative algorithm. 

 
       In the case of pulse retrieval from experimental data, experimental error and measurement 
noise are always a major concern. To minimize the effect of noise, data preprocessing is 
indispensable. Various data preprocessing had been employed in previous studies [12]. In this 
work, we first subtract the background from the profile of the spectral Fourier moduli and 
smoothly paddle the wings to zero. Then the retrieval error could be dramatically improved 
from 0.334 to 0.02833. Using the electric field retrieved from this preprocessed data, we 
found the pulse retrieval error to be much lower. The result is also more reproducible. 
       The retrieved amplitude and phase profiles can be used to calculate the second-order 
interferometric autocorrelation trace, which is shown as the solid curve in Fig. 7.  
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Fig. 7.  Comparison between the experimental and theoretical second-order 
interferometric autocorrelation traces. 

 
       The open circles shown are the experimental trace, which agree well with the calculated 
curve. This result strongly supports that the retrieved information about amplitude and phase 
profiles by PSGA are fairly reliable and accurate. 
       We note that PSGA combined with interferometric autocorrelation technique will 
faithfully retrieve the phase information of optical pulses with fast convergence and high 
accuracy. Typically, the retrieval time is less than ten seconds for this algorithm running up to 
1000 generations. In fact, the PSGA combined with FROG technique has also been performed 
in our lab. For the same FROG spectrograms, PSGA yields better performance than phase 
retrieval using either GA, or generalized projections, or Singular Value Decomposition (SVD) 
methods. However, due to a variety of the data sets of the FROG spectrograms, it is much 
time-consuming for algorithms to retrieve a reliable result than the case of IAC. Using PSGA 
in FROG, the retrieval usually takes several minutes to converge to a solution with low error. 

4. Conclusions  

In summary, we have demonstrated a new genetic algorithm with population splitting 
technique. This algorithm was applied to retrieve complete phase information of femtosecond 
pulses from measured interferometric autocorrelation traces. The PSGA exhibits several 
attractive features such as fast searching speed and high accuracy achieved with much smaller 
population size than the conventional GA. We expect that PSGA can also be a versatile tool 
for applications including optimal design of photonic devices, pulse shaping and ultrafast 
spectroscopy. 
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