
Chapter 3  General Description of Wave Propagation in a 

Nonlinear Medium 

 

3.1 A General Form of the Problem 

In this chapter, we are going to analyze the coupling effects between 

(1) light waves, or occurring between 

(2) light waves and the induced polarization. 

 

To facilitate our discussion, let us assume an induced optical polarization to be the source 

term of the Maxwell’s equations 

( , )
( , )

4 1 ( , )
( , )

B r t
E r t

t

E r t
B r t J

c c t

ππππ

∂∂∂∂
∇ × = −∇ × = −∇ × = −∇ × = −

∂∂∂∂

∂∂∂∂
∇ × = +∇ × = +∇ × = +∇ × = +

∂∂∂∂

.                     (1) 

 

Here J denotes a total volume current density, which is composed of polarization current and 

conduction current such as 
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In NLO, we are usually not interested in the conduction current density ( , )
c

J r t . Therefore, 

let ( , ) 0
c

J r t ==== for the time being. This is rigorously valid in a dielectric medium containing 

bound charges only. 

 

Combining the two curl equations of Eq. (1) to form 
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and then transforming Eq. (2) into the frequency domain with ( , ) ( , ) i tE r t E r e dωωωωω ωω ωω ωω ω==== ����
� �

,  

we obtain 
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3.1 Wave Propagation in the Linear Regime 
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Here we consider a wave propagating in a linear ( 0
NL

P ==== ) while anisotropic ( 0
ij

εεεε ≠≠≠≠ ) 

medium. The governing wave equation becomes 
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By combining the last two terms together, we then obtain 
2

2

(1)

[ ( , )] ( , ) 0

( ) 4 ( )

E r E r
c

with I

ωωωω
ω ε ωω ε ωω ε ωω ε ω

ε ω π χ ωε ω π χ ωε ω π χ ωε ω π χ ω

∇ × ∇ × − ⋅ =∇ × ∇ × − ⋅ =∇ × ∇ × − ⋅ =∇ × ∇ × − ⋅ =

= += += += +

�� � �

�� �
. 

 

First, let us consider a monochromatic wave propagating in a uniform dielectric 

medium, the above wave equation can be simplified into  
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= =  with 0k =wave vector in vacuum, and n =the refractive index 

of the medium. When the wave propagates in presence of fluctuations n(x, y, z; t), a 

term coupling the polarizations may occur in the wave equation 
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However, the order of magnitude calculations indicates that the coupling term may be 

negligible in an approximation and therefore, the fluctuations in refractive index do 

not cause mixing in the polarization components during the propagation. That is: 

turbulent propagation still satisfies the “scalar diffraction” picture. 

 

In this case, we can decompose 
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to denote the average wave vector in the unperturbed medium. Then, 
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Thus, the third term can be considered as a perturbation to 
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Now let us return to the discussion on the uniform while anisotropic dielectric medium. We 

can find a set of possible solution of Eq. (4) to be 
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By plugging the possible solution set of Eq. (5) into 
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To have a nontrivial solution of E
�

, the determinant of the Eq. (7) must be equal to zero 

[determinant]=0 .                           (8) 

 

Eq. (8) can lead to the following interesting results: 

••••  For a given propagation direction ŝ , there are two k values which are the intersections 

of the direction of propagation and the normal surface. Thus, we have two different phase 

velocities 
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are two different indices of refraction. 
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••••  The two phase velocities correspond to two mutually orthogonal polarizations. 

Let ˆk n sωωωω====
�
� , Eq. (8) reduces to the well-known Fresnel’s equation of wave normal 
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and the directions of the electric field vector become 

2

1,2

2

1,2 1,2

2

1,2

( )

ˆ ( )

( )

x x

y y

z z

s n

e s n

s n

εεεε

εεεε

εεεε

� 	� 	� 	� 	−−−−

 �
 �
 �
 �

= −= −= −= −
 �
 �
 �
 �

 �
 �
 �
 �

−−−−� 
� 
� 
� 


. 

Eq. (9) is a quadratic equation of n
2
. Note that in a dielectric medium without free charges  
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Poynting vector can be used to reveal the energy flow of an optical beam in a medium, thus 
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We can also estimate the electric energy stored in the medium to be 
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Here , ,
x y z

ε ε εε ε εε ε εε ε ε denote the principal dielectric constants. 

By defining 2
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D U x==== , Eq. (10) then becomes 
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Redefine a new coordinate system such that one of the coordinate axes along the beam 
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The inverse index of refraction associated with any given propagation direction ŝ  can then 

be expressed as a linear combination of two transverse eigenvectors 
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3.3 Wave Propagation in a Nonlinear Medium ( 0
NL

P ≠≠≠≠ ) 

From the wave equation with an induced polarization ( , )P k ωωωω
�

 

2 2

2 2

4
[ ( , )] ( , ) ( , )

m
E k E k P k

c c

ω πωω πωω πωω πω
ω ω ωω ω ωω ω ωω ω ω∇ × ∇ × = +∇ × ∇ × = +∇ × ∇ × = +∇ × ∇ × = +
� � ��
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Now note that 
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Let us examine the equation with second-order nonlinear optical effect: 
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3.4 Slowly Varying Amplitude Approximation (SVA) 

 

In this section, we will consider the wave couplings in a NLO medium, leading to 

••••  an energy transfer among waves, and causes 

••••  optical field amplitudes to change with wave propagation. 
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Based on the radiation theory, we can split the nonlinear wave propagation equation 
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Now by invoking SVA, the coupled wave equation 
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For simplicity, we will focus on the planar wave propagation without considering the 

diffraction effect. Therefore, the field dependence on transverse coordinates � will be 

neglected hereafter. 

By writing ( )

,
( , ) ( ) s si k z tNL

NL s
P z P z e

ωωωωωωωω −−−−

⊥ ⊥⊥ ⊥⊥ ⊥⊥ ⊥==== , 

2

2

2
( )    with  NL i k z

s

i
P z e k k k

z kc

π ωπ ωπ ωπ ω − ∆− ∆− ∆− ∆⊥⊥⊥⊥
⊥⊥⊥⊥

∂∂∂∂
= ∆ = −= ∆ = −= ∆ = −= ∆ = −

∂∂∂∂

�
. 

 

To solve the coupled equations, we need to implement some boundary conditions, which 

are 

••••  Tangential components of  and E B
� �

at a boundary surface must be continuous for each 

Fourier component. Since 
H P

E E E= + == + == + == + =
� � �

homogeneous + particular solutions, the boundary 



conditions imply 
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Due to the translation symmetry on the boundary, 

, ,

, ,

, ,
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I x I x

R x R x

T x T x

k k

k k

k k
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3.5 Time-Dependent Wave Propagation 

Waves with time-varying amplitude should obey the wave equation in time-domain 
2 2

2 2 2 2

1 4
[ ( ) ] ( , ) ( , )E r t P r t

c t c t

ππππ∂ ∂∂ ∂∂ ∂∂ ∂
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∂ ∂∂ ∂∂ ∂∂ ∂

� �� �
. 

Assuming that a quasi-monochromatic plane wave propagates along the symmetry axis ẑ , 

then 
2 2 2

2 2 2 2 2
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, 

where ( , ) ( , ) 4 ( , )
L

D z t E z t P z tππππ= += += += +
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.  

Let ( , ) ( , ) ikz i tE z t z t e ωωωω−−−−====
��
� , then 
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Here we have applied SVA on this equation. 

By expressing ( , )E z t
�

 in terms of Fourier integral ( )( , ) ( ) ikz i tE z t e dω ηω ηω ηω ηω η ηω η ηω η ηω η η− +− +− +− += += += += +����� , 

therefore ( )( , ) ( ) ( ) ikz i tD z t e dω ηω ηω ηω ηε ω η ω η ηε ω η ω η ηε ω η ω η ηε ω η ω η η− +− +− +− += + += + += + += + +���� � .  

We examine 
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�

 in more detail in terms of Fourier integral 
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We can calculate the group velocity of an optical pulse in a dispersive medium with 
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2 ( )g

dk d d

v d d c c dc
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We can reduce the term of 
2

2 2

1 ( , )D z t
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∂∂∂∂
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in the time-dependent wave equation into 
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We then approximate 
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to depict a wave propagating in the +z direction. 

Similarly, 
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to depict a wave propagating in the -z direction. 

 

If [ ( ) ] ( )l c tε ωε ωε ωε ω ⋅ ∂ ∂⋅ ∂ ∂⋅ ∂ ∂⋅ ∂ ∂� �� , and note | ( ) |  and  |( ) | | |
tr p

l c t t tε ωε ωε ωε ω = ⋅ ∂ ∂ == ⋅ ∂ ∂ == ⋅ ∂ ∂ == ⋅ ∂ ∂ =� �  the 

inequality leads to 
tr p

t t� . Under this condition, the time derivative term can be neglected 



and this renders into the wave propagation in the steady-state regime. 

 

 

3.6 The Relationship between Macroscopic and Local Field Quantities 

 

Note that 

••••  Fields appearing in the Maxwell’s equations are macroscopic quantities, i.e., they are 

averaged over macroscopic volume of polarization. 

••••  But dynamical model of polarization ( )P r
�

�

 often requires one to take into account local 

field at the position of a particular molecule. 

 

To solve the difficulty, let us first consider the following situation: 

♦a linear, isotropic medium (i.e., fluid or crystal with cubic symmetry) 0
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P ====  
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Then consider 

♦ a nonlinear medium with (2) 0χχχχ ≠≠≠≠  (i.e., 0
NL

P ≠≠≠≠ ) 

4
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where (1)
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P Eχχχχ====  denotes the linear polarization, and 

NL
P  indicates the nonlinear 

polarization. 

Thus, 
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implying the linear dipole moment can be affected by the existing nonlinear dipole moments 



in the neighborhood by 
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Note that by using Clausius-Mossotti equation (1) 3 1
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, we can further convert linear 

polarization to be 
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Assuming the nonlinear optical polarization to be second-order effect (2)
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then 
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This implies that we can define an effective nonlinear susceptibility with 
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However we shall keep in mind that the results have neglected the interaction between 

nonlinear dipole moments at different sites. 


