
Chapter 2  Macroscopic Theory of Optical Susceptibility 

Tensors 

 

 

Purpose of this chapter 

Use a few simple physical principles to deduce important fundamental and universal 

properties of nonlinear optical susceptibilities. 

 

We will start from ( ) ( ) Constitutive RelationP t E ττττ↔↔↔↔  via 

the following two Approaches: 

(1) From time-domain ����  Response Function 

(2) From frequency-domain ����  Susceptibility 

 

2.1 Response Function and Constitutive Relations 

 

In general, any intuitive picture given shall reveal P(t) to be nonlocal and a finite response 

time. But for simplicity, let us first consider 

••••  Local Response [Note that this limitation can be lifted with spatial dispersion of ( , )kχ ωχ ωχ ωχ ω
�

 

as in the last section of this chapter] 

 We assume polarization at a position in the medium is determined completely by the 

electric field at that position, i.e., (1)( ) [ ( )] ( ) ( )P r P E r E rω ω ωχ ω=
� � � ��� � �

� . 

••••  Invoking time-invariance 

Dynamical properties of the system are assumed to be unchanged by a translation of the 

time origin, that is, (1) (1) (1)

1 1 2 2( ; ) ( ; ) ( ; 0)R t t R t t Rτ τ τ+ = + =  

Time-displacement of the driving electric field merely results in a corresponding 

time-displacement of the induced polarization. 

 

2.1.1 Linear Response 



Starting from (1) (1)

0
( ) [ ] ( ; ) ( )tP tT E dε τ τ τε τ τ τε τ τ τε τ τ τ

+∞+∞+∞+∞

−∞−∞−∞−∞
==== ���� .                     (1) 

Here (1)( ; )T t ττττ  is a 2
nd

 rank tensor. Let us 

••••  first perform a time displacement 
0

t t t→ +→ +→ +→ +  

Eq. (1) then becomes (1) (1)

0 0
( ) ( ; ) ( )P t t T t t E dτ τ ττ τ ττ τ ττ τ τ

+∞+∞+∞+∞

−∞−∞−∞−∞
+ = ++ = ++ = ++ = +���� .           (2) 

••••  Then invoking time-invariance principle on Eq. (1): 
0 0

( ) ( )P t Et tττττ+ ↔ ++ ↔ ++ ↔ ++ ↔ +  

0 0

(1) (1)( ) ( ; ) ( )P T t tt Et dτ τ ττ τ ττ τ ττ τ τ
+∞+∞+∞+∞

−∞−∞−∞−∞
+ = ++ = ++ = ++ = +����  

Let 
0

' tτ ττ ττ ττ τ= += += += + , (1) (1)

0 0
( ) ( ; ' ) ( ') 'P t t T t t E dτ τ ττ τ ττ τ ττ τ τ

+∞+∞+∞+∞

−∞−∞−∞−∞
+ = −+ = −+ = −+ = −����                 (3) 

Compare Eq. (2) and Eq. (3), we obtain (1) (1)

0 0
( ; ) ( ; )T t t T t tτ ττ ττ ττ τ+ = −+ = −+ = −+ = − . 

i.e., (1)( ; )T t ττττ  depends on t ττττ−−−−  only, not on their individual values. 

Let t=0 and 
0

t t→→→→ , then (1) (1) (1)( ; ) (0; ) ( )T t T t R tτ τ ττ τ ττ τ ττ τ τ= − ≡ −= − ≡ −= − ≡ −= − ≡ − , defining a linear 

polarization response function of the medium (1)( )R t ττττ−−−−  and 

(1) (1)( ) ( ) ( )P t R t E dτ τ ττ τ ττ τ ττ τ τ
+∞+∞+∞+∞

−∞−∞−∞−∞
= −= −= −= −����  

Two important aspects of (1)R : 

••••  Causality condition: (1)( ) 0R t ====  when 0t <<<< . 

••••  Reality condition: (1)( )R t  is a real function of t . Both (1)( )P t  and ( )E t  are real, 

since they are physical quantities. 

 

2.1.2 Quadratic Nonlinear Response 

Starting from (2) (2)

1 2 1 2 1 2
( ) ( ; , ) ( ) ( )P t d d T t E Eµ µαβ α βµ µαβ α βµ µαβ α βµ µαβ α βτ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ τ

+∞ +∞+∞ +∞+∞ +∞+∞ +∞

−∞ −∞−∞ −∞−∞ −∞−∞ −∞
==== � �� �� �� � .          (4) 

Here (2)Tµαβµαβµαβµαβ  is a 3rd rank tensor. 

Note that (2)

1 2
( ; , )T tµαβµαβµαβµαβ τ ττ ττ ττ τ  uniquely determines the quadratic polarization in the NLO 

medium. However, because of the quadratic form of Eq. (4), (2)Tµαβµαβµαβµαβ is not uniquely 

determined by Eq. (4). This can be seen from 

(2) (2) (2)

1 2 1 2 1 2
( ; , ) ( ; , ) ( ; , )T t S t A tµαβ µαβ µαβµαβ µαβ µαβµαβ µαβ µαβµαβ µαβ µαβτ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ τ= += += += +  where 

(2) (2) (2)

1 2 1 2 2 1

1
( ; , ) [ ( ; , ) ( ; , )]

2
S t T t T tµαβ µαβ µβαµαβ µαβ µβαµαβ µαβ µβαµαβ µαβ µβατ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ τ= += += += +  and 



(2) (2) (2)

1 2 1 2 2 1

1
( ; , ) [ ( ; , ) ( ; , )]

2
A t T t T tµαβ µαβ µβαµαβ µαβ µβαµαβ µαβ µβαµαβ µαβ µβατ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ τ= −= −= −= − . 

Since an exchange of (
1

α τα τα τα τ ) and (
2

β τβ τβ τβ τ ) in Eq. (4) leaves the expression unchanged. Thus, 

(2)

1 2
( ; , )A tµαβµαβµαβµαβ τ ττ ττ ττ τ makes no contribution to (2)( )P tµµµµ . To make (2)

1 2
( ; , )T tµαβµαβµαβµαβ τ ττ ττ ττ τ unique, we must 

first transform it into a symmetric form by letting (2)

1 2
( ; , )A tµαβµαβµαβµαβ τ ττ ττ ττ τ =0, i.e., 

(2) (2)

1 2 2 1
( ; , ) ( ; , )T t T tµαβ µβαµαβ µβαµαβ µβαµαβ µβατ τ τ ττ τ τ ττ τ τ ττ τ τ τ==== . 

 

Now by invoking 

••••  Time-invariance principle 

(2) (2)

0 1 2 1 0 2 0
( ; , ) ( ; , )T t t T t t tτ τ τ ττ τ τ ττ τ τ ττ τ τ τ+ = − −+ = − −+ = − −+ = − −  and  let t =0, 

0
t t→→→→ , we obtain 

(2) (2)

1 2 1 2
( ; , ) ( , )T t R t tτ τ τ ττ τ τ ττ τ τ ττ τ τ τ≡ − −≡ − −≡ − −≡ − − =Quadratic Polarization Response Function. 

(2) (2)

1 2 1 2 1 2
( ) ( , ) : ( ) ( )P t d d R t t E Eτ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ τ

+∞ +∞+∞ +∞+∞ +∞+∞ +∞

−∞ −∞−∞ −∞−∞ −∞−∞ −∞
= − −= − −= − −= − −� �� �� �� �                    (5) 

Two important aspects of (2)

1 2
( , )R t tµαβµαβµαβµαβ : 

••••  Causality condition: (2)

1 2
( , )R t t =0 when 

1 2
or0 0t t< << << << < . 

••••  Reality condition: (2)

1 2
( , )R t t  is a real function of 

1 2
ort t . 

••••  Intrinsic Permutation Symmetry: (2) (2)

1 2 2 1
( , ) ( , )R t t R t tµαβ µβαµαβ µβαµαβ µβαµαβ µβα====  

 

2.1.3 Higher-Order Nonlinear Response 

Generalize to ( ) ( )

1 1 2 1 2
( ) ( ; , , ) | ( ) ( ) ( )n n

n n n
P t d d T t E E Eτ τ τ τ τ τ τ ττ τ τ τ τ τ τ ττ τ τ τ τ τ τ ττ τ τ τ τ τ τ τ

+∞ +∞+∞ +∞+∞ +∞+∞ +∞

−∞ −∞−∞ −∞−∞ −∞−∞ −∞
= ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅� �� �� �� �  

Here 
1 2

( )

n

nTµα α αµα α αµα α αµα α α⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅  is a (n+1)th rank tensor. 

Here 
1 2 1 2

( ) ( )

1 2 1 2

1
( ; , , ) ( ; , , )

!n n

n n

n n
T t S T t

n
µα α α µα α αµα α α µα α αµα α α µα α αµα α α µα α ατ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ τ⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅ = ⋅ ⋅⋅⋅ ⋅⋅ = ⋅ ⋅⋅⋅ ⋅⋅ = ⋅ ⋅⋅⋅ ⋅⋅ = ⋅ ⋅⋅  with a symmetrized 

operator S denoting a summation over all the tensor components obtained by making the n! 

permutations of the n pairs (
1 1

α τα τα τα τ )…..(
n n

α τα τα τα τ ). This symmetrized operation makes ( )nT  

satisfies intrinsic permutation symmetry. 



1 2 1 2

( ) ( )

1 2 1 2
( ; , , ) ( , , )

n n

n n

n n
T t R t t tµα α α µα α αµα α α µα α αµα α α µα α αµα α α µα α ατ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ τ⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅ ≡ − − ⋅ ⋅⋅ −⋅ ⋅⋅ ≡ − − ⋅ ⋅⋅ −⋅ ⋅⋅ ≡ − − ⋅ ⋅⋅ −⋅ ⋅⋅ ≡ − − ⋅ ⋅⋅ − .  

Therefore, 

( ) ( )

1 1 2 1 2
( ) ( , , ) | ( ) ( ) ( )n n

n n n
P t d d R t t t E E Eτ τ τ τ τ τ τ ττ τ τ τ τ τ τ ττ τ τ τ τ τ τ ττ τ τ τ τ τ τ τ

+∞ +∞+∞ +∞+∞ +∞+∞ +∞

−∞ −∞−∞ −∞−∞ −∞−∞ −∞
= ⋅ ⋅ ⋅ − − ⋅ ⋅⋅ − ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ − − ⋅ ⋅⋅ − ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ − − ⋅ ⋅⋅ − ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ − − ⋅ ⋅⋅ − ⋅ ⋅ ⋅� �� �� �� �    (6) 

 

2.2 Susceptibility Tensors in the Frequency Domain 

The response function in time domain can be transformed into susceptibility tensor in 

frequency domain. 

 

2.2.1 The Complex Frequency Plane 

Note 

( ) ( ) where

1
( ) ( )

2

i

i

E E e d

E E e d

ωτωτωτωτ

ωτωτωτωτ

τ ω ωτ ω ωτ ω ωτ ω ω

ω τ τω τ τω τ τω τ τ
ππππ

+∞+∞+∞+∞
−−−−

−∞−∞−∞−∞

+∞+∞+∞+∞

−∞−∞−∞−∞

≡≡≡≡

====

����

����
. 

If ( )E ττττ  vanishes in the past ( 0ττττ <<<< ), let x iyωωωω = += += += +  for mathematical convenience, 

( )

0

1 1
( ) ( ) ( )

2 2

i ix yE E e d E e dωτ τωτ τωτ τωτ τω τ τ τ τω τ τ τ τω τ τ τ τω τ τ τ τ
π ππ ππ ππ π

+∞ +∞+∞ +∞+∞ +∞+∞ +∞
−−−−

−∞−∞−∞−∞
= == == == =� �� �� �� �  exists,  if y >0. 

The integration converges if y>0 (i.e., ωωωω  lies in the upper half plane. Let d dxωωωω →→→→  

with integration path along the real axis in the upper half-plane. 

( ) iE e dωτωτωτωτω ωω ωω ωω ω
+∞+∞+∞+∞

−−−−

−∞−∞−∞−∞����  is finite and therefore exists! 

( ) ( ) ( ) ( )

( )

1 1
( ) ( ) [ ]

2 2

( ) ( ) ( )

y t ix t y t ix t

y t

dx d E e e d E e dx e dx

d E e t E t

τ τ τ ττ τ τ ττ τ τ ττ τ τ τ

ττττ

τ τ τ ττ τ τ ττ τ τ ττ τ τ τ
π ππ ππ ππ π

τ τ δ ττ τ δ ττ τ δ ττ τ δ τ

+∞ +∞ +∞ +∞+∞ +∞ +∞ +∞+∞ +∞ +∞ +∞+∞ +∞ +∞ +∞
− − − − − −− − − − − −− − − − − −− − − − − −

−∞ −∞ −∞ −∞−∞ −∞ −∞ −∞−∞ −∞ −∞ −∞−∞ −∞ −∞ −∞

+∞+∞+∞+∞
− −− −− −− −

−∞−∞−∞−∞

====

= − == − == − == − =

� � � �� � � �� � � �� � � �

����
. 

 

In addition, since ( )E t  is real ����  [ ( )]* ( *)E Eω ωω ωω ωω ω= −= −= −= − . 

 

2.2.2 Linear Optical Susceptibility 

Note that 



(1) (1)

(1)

(1) ( ')

(1)

( ) ( ) ( )

( ') ( ') '

' ( ') ( )

( ; ) ( )

i t

i t

P t R t E d

R E t d

d d R E e

d E e

ω τω τω τω τ

ωωωω
σσσσ

τ τ ττ τ ττ τ ττ τ τ

τ τ ττ τ ττ τ ττ τ τ

ω τ τ ωω τ τ ωω τ τ ωω τ τ ω

ω χ ω ω ωω χ ω ω ωω χ ω ω ωω χ ω ω ω

+∞+∞+∞+∞

−∞−∞−∞−∞

+∞+∞+∞+∞

−∞−∞−∞−∞

+∞ +∞+∞ +∞+∞ +∞+∞ +∞
− −− −− −− −

−∞ −∞−∞ −∞−∞ −∞−∞ −∞

+∞+∞+∞+∞
−−−−

−∞−∞−∞−∞

= −= −= −= −

= −= −= −= −

====

= −= −= −= −

����

����

� �� �� �� �

����

, 

where (1) (1)( ; ) ( ) id R e ωτωτωτωτ
σσσσχ ω ω τ τχ ω ω τ τχ ω ω τ τχ ω ω τ τ

+∞+∞+∞+∞

−∞−∞−∞−∞
− ≡− ≡− ≡− ≡ ����                       (8) 

and σσσσω ωω ωω ωω ω==== . 

 

••••  Causality Condition in the Frequency Domain: (1)( ) 0R ττττ ====  when  0ττττ <<<<  [in time 

domain]. 0ie ωτωτωτωτ →→→→  when ττττ → +∞→ +∞→ +∞→ +∞  if ωωωω  in the upper half-plane. Thus, Eq. (8) converges 

if ωωωω  is in the upper half-plane, i.e.,  
(1)( ; )χ ω ωχ ω ωχ ω ωχ ω ω−−−−  is analytic in the upper half-plane of ωωωω. 

 

••••  Reality Condition in the Frequency Domain: (1)( )R ττττ  is a real function of ττττ  in the 

time domain ⇔⇔⇔⇔  (1) (1)[ ( ; )]* ( *; *)χ ω ω χ ω ωχ ω ω χ ω ωχ ω ω χ ω ωχ ω ω χ ω ω− = −− = −− = −− = − . 

 

2.2.3 Second-Order Nonlinear Optical Susceptibility 

 

By expressing ( )E t  in the frequency domain: 

1 1 2 2

(2) (2)

1 2 1 2 1 2

{ ( ) ( )}(2)

1 2 1 2 1 2 1 2

( ) ( , ) ( ) ( )

( , ) ( ) ( )
i t t

P t d d R E t E t

d d d d R E E e
ω τ ω τω τ ω τω τ ω τω τ ω τ

τ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ ττ τ τ τ τ τ

ω ω τ τ τ τ ω ωω ω τ τ τ τ ω ωω ω τ τ τ τ ω ωω ω τ τ τ τ ω ω

+∞ +∞+∞ +∞+∞ +∞+∞ +∞

−∞ −∞−∞ −∞−∞ −∞−∞ −∞

+∞ +∞ +∞ +∞+∞ +∞ +∞ +∞+∞ +∞ +∞ +∞+∞ +∞ +∞ +∞
− − + −− − + −− − + −− − + −

−∞ −∞ −∞ −∞−∞ −∞ −∞ −∞−∞ −∞ −∞ −∞−∞ −∞ −∞ −∞

= − −= − −= − −= − −

====

� �� �� �� �

� � � �� � � �� � � �� � � �
. 

 

Let 
1 2σσσσω ω ωω ω ωω ω ωω ω ω= += += += + , 

(2) (2)

1 2 1 2 1 2
( ) ( ; , ) ( ) ( )

i t
P t d d E E e σσσσωωωω

σσσσω ω χ ω ω ω ω ωω ω χ ω ω ω ω ωω ω χ ω ω ω ω ωω ω χ ω ω ω ω ω
+∞ +∞+∞ +∞+∞ +∞+∞ +∞

−−−−

−∞ −∞−∞ −∞−∞ −∞−∞ −∞
= −= −= −= −� �� �� �� � .              (9) 

Here 

1 1 2 2( )(2) (2)

1 2 1 2 1 2
( ; , ) ( , )

i
d d R e

ω τ ω τω τ ω τω τ ω τω τ ω τ
σσσσχ ω ω ω τ τ τ τχ ω ω ω τ τ τ τχ ω ω ω τ τ τ τχ ω ω ω τ τ τ τ

+∞ +∞+∞ +∞+∞ +∞+∞ +∞
++++

−∞ −∞−∞ −∞−∞ −∞−∞ −∞
− ≡− ≡− ≡− ≡ � �� �� �� �  

 

••••  Causality Condition in the Frequency Domain: 

(2)

1 2
( ; , )σσσσχ ω ω ωχ ω ω ωχ ω ω ωχ ω ω ω−−−−  is analytic when both 

1 2
andω ωω ωω ωω ω  lie in the upper half-plane. 



••••  Reality Condition: (2) (2)

1 2 1 2
[ ( ; , )]* ( *; *, *)σ σσ σσ σσ σχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ω− = − −− = − −− = − −− = − − . 

••••  Intrinsic Permutation Symmetry: (2) (2)

1 2 2 1
( ; , ) ( ; , )µαβ σ µβα σµαβ σ µβα σµαβ σ µβα σµαβ σ µβα σχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ω− = −− = −− = −− = − . 

 

2.2.4 Nth-Order Nonlinear Optical Susceptibility 

Let 
1 nσσσσω ω ωω ω ωω ω ωω ω ω= + ⋅ ⋅ ⋅ += + ⋅ ⋅ ⋅ += + ⋅ ⋅ ⋅ += + ⋅ ⋅ ⋅ + , 

( ) ( )

1 1 1
( ) ( ; , , ) ( ) ( )

i tn n

n n n
P t d d E E e σσσσωωωω

σσσσω ω χ ω ω ω ω ωω ω χ ω ω ω ω ωω ω χ ω ω ω ω ωω ω χ ω ω ω ω ω
+∞ +∞+∞ +∞+∞ +∞+∞ +∞

−−−−

−∞ −∞−∞ −∞−∞ −∞−∞ −∞
= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅� �� �� �� �         (10) 

Here 

( ) ( )

1 1 1
( ; , , ) ( , , )

j j

j

i
n n

n n n
d d R e

ω τω τω τω τ

σσσσχ ω ω ω τ τ τ τχ ω ω ω τ τ τ τχ ω ω ω τ τ τ τχ ω ω ω τ τ τ τ
+∞ +∞+∞ +∞+∞ +∞+∞ +∞

−∞ −∞−∞ −∞−∞ −∞−∞ −∞

����
− ⋅ ⋅ ⋅ ≡ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ ≡ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ ≡ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ ≡ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅� �� �� �� � and 

( ) ( )

1 1
( ) ( ; , , ) | ( ) ( )n n

n n
P E Eσ σσ σσ σσ σω χ ω ω ω ω ωω χ ω ω ω ω ωω χ ω ω ω ω ωω χ ω ω ω ω ω= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

 

••••  Causality Condition in the Frequency Domain: 

( )

1
( ; , , )n

nσσσσχ ω ω ωχ ω ω ωχ ω ω ωχ ω ω ω− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅  is analytic when all the frequencies 
1

, ,
n

ω ωω ωω ωω ω⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅  lie in the upper 

half-plane. 

••••  Reality Condition: ( ) ( )

1 1
[ ( ; , , )]* ( *; *, , *)n n

n nσ σσ σσ σσ σχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ω− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ −− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ −− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ −− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ − . 

••••  Intrinsic Permutation Symmetry: 
1 2

( )

1
( ; , , )

n

n

nµα α α σµα α α σµα α α σµα α α σχ ω ω ωχ ω ω ωχ ω ω ωχ ω ω ω⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅  is invariant 

under all n! permutations of the n pairs (
1 1

α ωα ωα ωα ω ), …., (
n n

α ωα ωα ωα ω ). 

 

2.3 Symmetry Properties of the Susceptibility Tensors 

2.3.1 Permutation Symmetry 

••••  Intrinsic Permutation Symmetry of
1 2

( )

1
( ; , , )

n

n

nµα α α σµα α α σµα α α σµα α α σχ ω ω ωχ ω ω ωχ ω ω ωχ ω ω ω⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ : ( )nχχχχ  is 

invariant under all n! permutations of the n pairs (
1 1

α ωα ωα ωα ω ), …., (
n n

α ωα ωα ωα ω ). 

 Intrinsic permutation symmetry is a fundamental property of the nonlinear 

susceptibilities which arises from the principles of time-invariance and causality and 

which applies universally. 

 

••••  Overall Permutation Symmetry of
1 2

( )

1
( ; , , )

n

n

nµα α α σµα α α σµα α α σµα α α σχ ω ω ωχ ω ω ωχ ω ω ωχ ω ω ω⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ : ( )nχχχχ  is 

invariant under all n! permutations of the n pairs (
1 1

α ωα ωα ωα ω ), …., (
n n

α ωα ωα ωα ω ) and the 

additional pair ( , σσσσµ ωµ ωµ ωµ ω−−−− ), i.e., 



 The (n+1)! permutations of the pairs (
1 1

α ωα ωα ωα ω ), …., (
n n

α ωα ωα ωα ω ) and ( , σσσσµ ωµ ωµ ωµ ω−−−− ) leave ( )nχχχχ  

unchange. Note that this symmetry is an approximation which is valid when all of the optical 

frequencies are far separated from the transition frequencies of the nonlinear optical medium 

(i.e., medium is transparent at all the relevant frequencies). 

 

2.3.2 Time-Reversal Symmetry of
1 2

( )

1
( ; , , )

n

n

nµα α α σµα α α σµα α α σµα α α σχ ω ω ωχ ω ω ωχ ω ω ωχ ω ω ω⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅  

If the Hamiltonian of a dynamical system is invariant under time-reversal, then the 

dynamical system shall possess time-reversal symmetry.  

 

What is the time-reversal operation for a dynamical system? 

Recall there are two types of dynamical variables under time-reversal operation t t→ −→ −→ −→ − . 

For example, in Classical Mechanics (CM) we can find the following two types of dynamical 

variable: 

(1) invariant under time-reversal  

such as r r when t t→ → −→ → −→ → −→ → −
� �

, and ( ) ( )f r f r when t t→ → −→ → −→ → −→ → −
� �

; 
2 2( ) ( )g p p p g p when t t= ⋅ → → −= ⋅ → → −= ⋅ → → −= ⋅ → → −
� �

. 

(2) change sign under time-reversal 

t td r
p m p

d t

→−→−→−→−≡ → −≡ → −≡ → −≡ → −

�
� �

. 

 

In Quantum Mechanics (QM), we have 

(1) invariant under time-reversal  

which in fact are all real operators such as r r→→→→
� �

, 2 2( ) ( )g p p p g p= ⋅ →= ⋅ →= ⋅ →= ⋅ →
� �

 (e.g., kinetic 

energy), ( ) ( )f r f r→→→→
� �

 (potential energy) when taking time-reversal operation (i.e., complex 

conjugate). 

(2) change sign under time-reversal 

which are all pure imaginary operators such as 

p i p= − ∇ → −= − ∇ → −= − ∇ → −= − ∇ → −
� �

� . 

 

Therefore, the time-reversal operation can be described by 

I. Classical Mechanics (CM)               II. Quantum Mechanics (QM) 

t t→ −→ −→ −→ −          *O O→→→→  

 

When Hamiltonian 
0

H  consists of a sum of kinetic energy term 2( )g p , and an 

interaction potential energy which is a real function of the vector coordinates 



and
j k

r R
��

, then 

••••  
0

H  is invariant under time-reversal (CM); 

••••  
0

H  is a real operator (QM). 

 

Considering that
0

( ) ( )
i i i

H u E uΘ = ΘΘ = ΘΘ = ΘΘ = Θ , 

(1) both
0

and
i

H E  are real. Note that ( )
i

u ΘΘΘΘ  [the energy eigenfunctions] can be chosen to 

be real by properly choosing a phase reference; and therefore 

(2) dipole-moment element is real too. This can be seen from 

[ ] *( ) ( )
ab a b

e r d u er uα αα αα αα α= Θ Θ Θ= Θ Θ Θ= Θ Θ Θ= Θ Θ Θ����  [ ]
ab

e rαααα→→→→ , which is a real quantity! 

(3) from 

1

1 1 2

1 2

1 1 2

1
( )

1 0

1 2

[ ] [ ] [ ]
( ; , , ) ( )

! ( )( ) ( )

n

n

n

n n

n
ab b b b an

n rn
ab b b a n b a n b a n

r r rNe
S a

n

ααµ

µα α α σχ ω ω ω ρ
ω ω ω ω ω

+

⋅⋅⋅
⋅⋅⋅

⋅⋅ ⋅
− ⋅⋅⋅ =

Ω − ⋅⋅⋅ − Ω − ⋅⋅ − ⋅⋅⋅ Ω −
�

�
 

Note 
10 ( ) is real and reala BE k T

b a
a eρ − Ω ≡� . 

By exploiting time reversal operation, 

(I) 
1 2 1 2

( ) ( )

1 1
[ ( ; , , )]* ( *; *, , *)

n n

n n

n nµα α α σ µα α α σµα α α σ µα α α σµα α α σ µα α α σµα α α σ µα α α σχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ω⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ , i.e.,  

if 
1

( ; , , )
nσσσσω ω ωω ω ωω ω ωω ω ω− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ are real, then 

1 2 1 2

( ) ( )

1 1
[ ( ; , , )]* ( ; , , )

n n

n n

n nµα α α σ µα α α σµα α α σ µα α α σµα α α σ µα α α σµα α α σ µα α α σχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ω⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ . 

 

(II) From Reality condition 

1 2

1 2

( )

1

( )

1

[ ( ; , , )]* ( )

( *; *, , *)

n

n

n

n

n

n

reality conditionµα α α σµα α α σµα α α σµα α α σ

µα α α σµα α α σµα α α σµα α α σ

χ ω ω ωχ ω ω ωχ ω ω ωχ ω ω ω

χ ω ω ωχ ω ω ωχ ω ω ωχ ω ω ω

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ ����

= − ⋅ ⋅ ⋅ −= − ⋅ ⋅ ⋅ −= − ⋅ ⋅ ⋅ −= − ⋅ ⋅ ⋅ −
. 

From (I) and (II), 
1 2 1 2

( ) ( )

1 1
( ; , , ) ( ; , , )

n n

n n

n nµα α α σ µα α α σµα α α σ µα α α σµα α α σ µα α α σµα α α σ µα α α σχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ω⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅− ⋅ ⋅ ⋅ − = − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ − = − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ − = − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ − = − ⋅ ⋅ ⋅ , 

i.e., if ( )nχχχχ  is invariant under time-reversal operation, then ( )nχχχχ  is unchanged when all the 

frequencies 
1

( ; , , )
nσσσσω ω ωω ω ωω ω ωω ω ω⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅  of ( )nχχχχ are negated. 

 

A simple conclusion from this result: by considering the linear optics with n=1, 

(1) (1)

(1)

( ; ) ( ; ) [time-reversal invariant]

( ; ) [overall permutation symmetry]

µα µαµα µαµα µαµα µα

αµαµαµαµ

χ ω ω χ ω ωχ ω ω χ ω ωχ ω ω χ ω ωχ ω ω χ ω ω

χ ω ωχ ω ωχ ω ωχ ω ω

− = −− = −− = −− = −

= −= −= −= −
. 



Therefore, 

(1) (1)( ; ) ( ; )µα αµµα αµµα αµµα αµχ ω ω χ ω ωχ ω ω χ ω ωχ ω ω χ ω ωχ ω ω χ ω ω− = −− = −− = −− = −  is a symmetric tensor. Therefore, we can diagonalize it in an 

appropriate coordinates system. This is the basis of the well-known Reciprocity Theorem in 

Optics. However, like the overall permutation symmetry, time-reversal invariance breaks 

down when any of the optical frequencies near a transition frequency of the medium, where 

damping effect becomes important. 

 

2.3.3 Spatial Symmetry of
1 2

( )

1
( ; , , )

n

n

nµα α α σµα α α σµα α α σµα α α σχ ω ω ωχ ω ω ωχ ω ω ωχ ω ω ω⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅− ⋅ ⋅ ⋅  

Neumann’s Principle, which is applicable to all of the physical properties of a system that 

exhibits spatial symmetry, states 

Any physical property (i.e., the dynamical variables) must be invariant under any 

transformation of coordinates that is governed by a valid symmetry operation for the 

medium (i.e., belong to the symmetry group of the system) 

 

To illustrate the principle, let us first consider 'x R x====
�� �

 with R
�

 denoting a rotation, which 

can be either proper or improper operation. From the length invariant property, 

1( ') ( ') ( ) ( )T T Tx x x x R R−−−−==== ���� ====
� �� � � �

. 

Hence 1' ( ) ' '
i i i i i

x R x x R x R xα α α α α αα α α α α αα α α α α αα α α α α α
−−−−==== ���� = == == == = .  

Similarly, for other polar vectors such as ' ( ) ( ), '
i i i i

P t R P t E R Eµ µ µ µµ µ µ µµ µ µ µµ µ µ µ= == == == = . 

Let us examine the optical response in two different coordinate systems. 

 

(1) (1)

(1) (1)

( ) ( ; ) ( ) [old]

' ( ) '( ; ) ' ( ) [new]

i t

i t

P t E e d

P t E e d

ωωωω
µ µα αµ µα αµ µα αµ µα α

ωωωω
µ µα αµ µα αµ µα αµ µα α

χ ω ω ω ωχ ω ω ω ωχ ω ω ω ωχ ω ω ω ω

χ ω ω ω ωχ ω ω ω ωχ ω ω ω ωχ ω ω ω ω

+∞+∞+∞+∞
−−−−

−∞−∞−∞−∞

+∞+∞+∞+∞
−−−−

−∞−∞−∞−∞

= −= −= −= −

= −= −= −= −

����

����
.  

We can deduce the transformation rule for 2
nd

 rank tensor, 

(1) (1) (1)[ '(new)] [ (old)] [ (old) ]T

i j ij
R R R Rµα µ α µαµα µ α µαµα µ α µαµα µ α µαχ χ χχ χ χχ χ χχ χ χ= ≡= ≡= ≡= ≡ . 

Similar result for higher rank susceptibility tensor can also be obtained. 

 

Neumann’s Principle requires the elements of a susceptibility tensor taken with respect to 

two coordinate systems, which are related by one of the symmetry operations of the 

medium, must be identical. This leads to a simultaneous equation system of the 

susceptibility tensor components. 



1 1

1 1 1

( ) ( )

1 1

( )

1

' ( ; , , ) ( ; , , ) [Neumann's Principle]

= ( ; , , ) [Transformation of a Tensor]

n n

n n n

n n

n n

n

u a a ua a n
R R R

µα α σ µα α σµα α σ µα α σµα α σ µα α σµα α σ µα α σ

µ α α σµ α α σµ α α σµ α α σ

χ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ωχ ω ω ω χ ω ω ω

χ ω ω ωχ ω ω ωχ ω ω ωχ ω ω ω

⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅− ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅⋅ ⋅ ⋅ − ⋅ ⋅ ⋅⋅ ⋅ ⋅ − ⋅ ⋅ ⋅⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
 

We therefore can use Neumann’s Principle to reduce the number of the susceptibility tensor 

elements. The above equations impose restrictions on the elements of the susceptibility 

tensors. For example, let us consider the case of 

(1) 
1

( )

n

n

µα αµα αµα αµα αχχχχ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅  of a medium with an inversion symmetry. The inversion operation is 

described by Rαβ αβαβ αβαβ αβαβ αβδδδδ= −= −= −= − . 

 

1 1 1 1 1

( ) ( ) 1 ( )' = ( 1)
n n n n n

n n n n

u a a ua a
R R Rµα α µ α α µα αµα α µ α α µα αµα α µ α α µα αµα α µ α α µα αχ χ χχ χ χχ χ χχ χ χ++++

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅⋅ ⋅ ⋅ = −⋅ ⋅ ⋅ = −⋅ ⋅ ⋅ = −⋅ ⋅ ⋅ = −  implies 
1

( )

n

n

µα αµα αµα αµα αχχχχ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅  vanishes when 

n is even for a medium with an inversion symmetry. 

 

(2) 
1 2 3

(3)

µα α αµα α αµα α αµα α αχχχχ  of an isotropic medium 

An isotropic medium is a material which is invariant under (i) any rotation (proper); (ii) any 

reflection (improper), and (iii) inversion. 

The invariant condition for any reflection can be reduced to be invariant with reflections in 

three mutually orthogonal planes. 

 

Let us first consider 

••••  reflection in the yz-plane: 1( ) 1 2( ) 2 3( ) 3x y z→ − → →→ − → →→ − → →→ − → →  

 
(3)χχχχ����  with an odd number of x indices must be vanish. 



 

••••  reflection in the xz, and xy planes (3)χχχχ����  with an odd number of y (and z) indices must 

vanish. 

����  

(3)

(3)

(3

(3) (3) (3)

1111 2222 3333

(3) (3) (3)

1122 1133 2233

(3) (3) (3)

1212 1313 2323

(3) (3) (3)

1221

)

(3)

1331 2332

, , ;

, , , .;

, , , .;

:

,

:

:

: , , .;

iiii

iijj

ijij

ijji

etc

etc

etc

χχχχ

χχχχ

χχχχ

χ χ χχ χ χχ χ χχ χ χ

χ χ χχ χ χχ χ χχ χ χ

χ χ χχ χ χχ χ χχ χ χ

χχχχχχχχ χ χχ χχ χχ χ

 

 

Now let us further consider 

••••  90
o
 rotation about z-axis: 1 2, 2 1, 3 3→ → − →→ → − →→ → − →→ → − →  

����  

(3) (3)

1111 2222

(3) (3) (3) (3)

1122 2211 1133 2

(3)

(3)

(3)

233

(3) (3)

1212 2121

(3) (3)

1

(3)

221 2112

:

:

:

;

, ;

;

;:

iiii

iijj

ijij

ijji

χ χχ χχ χχ χ

χ χ χ χχ χ χ χχ χ χ χχ χ χ χ

χχχχ

χχχχ

χχχχ

χχχχ χχχχ

χ χχ χχ χχ χχχχχ

====

= == == == =

====

====

 

••••  90
o
 rotation about x-axis: 1 1 2 3 3 2→ → → −→ → → −→ → → −→ → → −  

                 y-axis: 1 3 2 2 3 1→ − → →→ − → →→ − → →→ − → →  

����  

(3)

(3)

(

(3) (3) (3)

1111 2222 3333

(3) (3) (3) (3) (3) (3)

1133 3311 1122 2211 2233 3322

(3) (3) (3) (3) (3) (3)

1212 2121 3131 1313 2323 3232

(3) (3) (3) (

2332 3223

3)

(3)

3113

;

;

: ;

:

:

:

iiii

iijj

ijij

ijji

χ χ χχ χ χχ χ χχ χ χ

χ χ χ χ χ χχ χ χ χ χ χχ χ χ χ χ χχ χ χ χ χ χ

χ χ χχ χ χχ χ χχ χ χ

χχχχ

χχχχ

χχχχχχχχ

χχχχ

χ χχ χχ χχ χ

χ χ χ χχ χ χ χχ χ χ χχ χ χ χ

= == == == =

= = = = == = = = == = = = == = = = =

= = = = == = = = == = = = == = = = =

= = == = == = == = = 3) (3) (3)

1331 1221 2112
χ χχ χχ χχ χ= == == == =

 

Let us then exploit the rotation about z-axis by arbitrary angleθθθθ , which is known to have the 

rotational matrix 

cos sin 0

sin cos 0

0 0 1

R

θ θθ θθ θθ θ

θ θθ θθ θθ θ

� �� �� �� �
� �� �� �� �= −= −= −= −� �� �� �� �
� �� �� �� �� 	� 	� 	� 	

. 

Thus, after rotation 

(3) (3)

1111

(3) (3)

1111 1111

(3) (3) (3) (3)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 4 (3) 2 2 (3) (3) (3)

1111 1212 1122 1

1

22

1

1

[old] '[new]

(cos sin ) 2cos sin ( )

i i i i iiii i j i j ijij i i j j iijj i j j i ijji

i ij ij ij

R R R R R R R R R R R R R R R R

χ χχ χχ χχ χ

χ χ χ χχ χ χ χχ χ χ χχ χ χ χ

θ θ χ θ θ χ χθ θ χ θ θ χ χθ θ χ θ θ χ χθ θ χ θ θ χ χ

χχχχ

χχχχ

χχχχ

====

= + + += + + += + + += + + +

= + + += + + += + + += + + +

====

++++

� � � �� � � �� � � �� � � �

(3) (3)

22 1212 1221
χ χχ χχ χχ χ+ ++ ++ ++ +

. 

Finally, by invoking Kleiman symmetry [note this is valid only for nonresonant media]: 

(3) (3) (3)

1122 1212 12

(3) (3)

11 1 121 22 11

1

3
χχχχ χχχχχ χχ χχ χχ χ χχχχ= == == == = ====���� ,  



i.e., only one independent component (3)

1111
χχχχ  left to be measured. 

 

2.4 Resonant Nonlinear Susceptibility Tensor 

Consider an applied optical field that comprise a superposition of quasi-monochromatic 

waves 

1
( ) [ ( ) . .]

2

i tE t E t e c cωωωω
ωωωω

ωωωω

−−−−= += += += +���� .  

The polarization induced in the medium can be expressed as 

1
( ) [ ( ) . .]

2

i tP t P t e c cωωωω
ωωωω

ωωωω

−−−−= += += += +���� . 

Here the quasi-monochromatic spectral component ( )( ) ( ) i tE t E e dωωωωω ωω ωω ωω ω
+∞+∞+∞+∞

− −Ω− −Ω− −Ω− −Ω

Ω ΩΩ ΩΩ ΩΩ Ω−∞−∞−∞−∞
= − Ω= − Ω= − Ω= − Ω����  

denotes an optical field with its spectrum centered at ΩΩΩΩ .  

Recall 

(1)( ) ( ; ) ( ) i tP t E t e dωωωω
ωωωωχ ω ω ωχ ω ω ωχ ω ω ωχ ω ω ω

+∞+∞+∞+∞
−−−−

−∞−∞−∞−∞
= −= −= −= −���� ,  

we then achieve ( )(1)( ;( ) ( )) i tP t E e dωωωωωωωωχ ωχ ωχ ωχ ω ωωωωωωωω
+∞+∞+∞+∞

− −Ω− −Ω− −Ω− −Ω

Ω ΩΩ ΩΩ ΩΩ Ω−∞−∞−∞−∞
= − Ω= − Ω= − Ω= − Ω−−−−���� . 

 

2.4.1 Adiabatic Response 

When ΩΩΩΩ  is far below the transition frequencies of the medium, 
ng

ωωωωΩΩΩΩ� , 

(1)( ; )χ ω ωχ ω ωχ ω ωχ ω ω−−−−  is a slowly-varying function of frequency ωωωω  around ΩΩΩΩ . 

Thus, we can express it in Taylor’s series at ΩΩΩΩ  

(1)

(1)
(1)

( )

( )

( ; )

( ; )
( ; ) | ( )

( ) ( )

[ ] ( )

i t

i t

P t E e d

E e d
d

d

ωωωω

ωωωω

χ ω ωχ ω ωχ ω ωχ ω ω

χ ω ωχ ω ωχ ω ωχ ω ω

ω ωω ωω ωω ω

ω ωω ωω ωω ωχ ωχ ωχ ωχ ω
ωωωω

+∞+∞+∞+∞
− −Ω− −Ω− −Ω− −Ω

Ω ΩΩ ΩΩ ΩΩ Ω−∞−∞−∞−∞

+∞+∞+∞+∞
− −Ω− −Ω− −Ω− −Ω

ΩΩΩΩ ΩΩΩΩ−∞−∞−∞−∞

= − Ω= − Ω= − Ω= − Ω

= −= −= −= −

−−−−

−−−−
−Ω Ω + ⋅ − Ω−Ω Ω + ⋅ − Ω−Ω Ω + ⋅ − Ω−Ω Ω + ⋅ − Ω ΩΩΩΩ+ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅

����

����
. 

Then, 

(1)
(1) ( )( ; )

( ) { ( ; ) ( ) | }
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For an adiabatically applied field, the magnitude of the second term must be much smaller 

than the first term, which leads to 
(1)
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Recall that 
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.  

Near a resonance 
ba ba

ω ωω ωω ωω ω∆ ≡ − Ω + Ω∆ ≡ − Ω + Ω∆ ≡ − Ω + Ω∆ ≡ − Ω + Ω� , therefore the inequality (I) becomes 
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From the characteristic rate of change of the field envelope: 

c

( ) ( ) 1
| | | | with field correlation time

c

E t dE t

dt
τ

τ δω
Ω Ω ≡� � . 

 

Inequality (II) then can be reduced to | | 1
i

δωδωδωδω

∆ − Γ∆ − Γ∆ − Γ∆ − Γ
�                   (III) 

 

 

Inequality (III) implies that for the adiabatic response to be valid, the frequency spread of the 

pulse should not overlap the medium’s transition frequency, implying that the field 

correlation time 
c

ττττ must be longer than the impulse response time of the polarization 

1
| |

c
i

ττττ
∆ − Γ∆ − Γ∆ − Γ∆ − Γ

� . 

 

2.4.2 Adiabatic Condition Violated 

When ΩΩΩΩ  is tuned closed to resonance with a transition and the fields are 

quasi-monochromatic. 

Note (1) (1)( ; ) ( ) iR e dωτωτωτωτχ ω ω τ τχ ω ω τ τχ ω ω τ τχ ω ω τ τ
+∞+∞+∞+∞

−∞−∞−∞−∞
− =− =− =− = ���� .  

By defining an envelope response function by (1)( ) ( ) iR e ωτωτωτωτφ τ τφ τ τφ τ τφ τ τ==== , we found 
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 is the polarization 

envelope. By using integration by part, 
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The expansion is a good approximation if | | 1
c

i ττττ∆ − Γ∆ − Γ∆ − Γ∆ − Γ �  for a coherent transient regime. 

 

When ( )E t  acting on the medium consists of a short pulse, incident at time 0t� , whose 

duration 
p

ττττ  is very much less than the polarization dephasing time 1| |
p

iττττ −−−−∆ − Γ∆ − Γ∆ − Γ∆ − Γ� , 
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P t e r E e Eωωωω τ χτ χτ χτ χ− ∆+Γ− ∆+Γ− ∆+Γ− ∆+Γ= ⋅ == ⋅ == ⋅ == ⋅ =

�

�
, i.e.,  

for pulsed excitation in the coherent transient regime, the response of the medium depends on 

the field area [
1
(0)

p
E ττττ ], rather than the instantaneous field. In this case, an equivalent 

susceptibility can be defined to be 

 (1) (1)

1 1 1 1
( ; ) ( ; ) ( )

equ p
iχ ω ω χ ω ω τχ ω ω χ ω ω τχ ω ω χ ω ω τχ ω ω χ ω ω τ− = − ⋅ ⋅ ∆ + Γ− = − ⋅ ⋅ ∆ + Γ− = − ⋅ ⋅ ∆ + Γ− = − ⋅ ⋅ ∆ + Γ , implying that in the transient regime, it is still 

possible to write an expression for the polarization in the familiar form of the adiabatic 

response, except that the true susceptibility is reduced by 
2p

Tττττ . 

 

2.5 Spatial Dispersion of Nonlinear Susceptibility Tensor 

In the previous discussion on the optical response function, we have used a local 

response assumption, which states 

Polarization at a point in the medium is assumed to be determined completely by the 

electric field at that point. 

Now note that the polarization can be determined by the electric field in the 

neighborhood of that point, the time-invariance used in the previous discussion should then 

be argumented by a corresponding principle of Spatial-Invariance. 
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and then 

••••  Intrinsic Permutation Symmetry requires (
1 1 1

rα τα τα τα τ
�

),…,(
n n n

rα τα τα τα τ
�

) can be exchanged without 

affecting ( )nR . 
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, ( )nχχχχ  will depend on k

�
 as well as 



ωωωω  [i.e., Spatial dispersion ( k
�

-dependent) + temporal dispersion have been included]. 
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) permutation symmetry. 

 

Spatial dispersion is important when 

••••  Polarizable units are strongly coupled such as cooperative effect like polariton shown 

below 

 

 

 

Electric-dipole approximation which neglects k
�

-dependence of 
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 implies local field is uniform when dλλλλ�  where d is the 

scale length of polarizable units. 


