Chapter 5  Second-Order NLO Effects

To facilitate the discussion of the topics, we assume all optical media used are weakly

(1)

nonlinear. (i.e.,‘ 2YE ‘ << ‘ X '|), implying that nonlinear effects are observable only

when light waves propagate through fairly long distance in a NLO medium. The
phase matching condition shall then be fulfilled in order to accumulate the NLO

effect:

—

K.=K, +K,, i.e.,

on(w,) » ono) » onw) 5
3 3)K3 — ( 1)K1+ 2 ( 2)K2
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The following two phase matching schemes are usually exploited for this purpose:

4 Collinear phase matching scheme
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K
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4 Noncollinear phase matching scheme

For collinear phase-matched SHG, the corresponding phase matching condition

becomes n, =n,, which is never fulfilled because of normal dispersion of a material

n(@ =) <n(w,=2w).

The use of anomalous dispersion to meet the phase condition is impractical since the

optical energy absorption is fairly high in this regime.

nA

normal anomalous




A better way to meet the phase matching condition is to exploit the birefringence of
an anisotropic crystal with interaction of differently polarized waves. To illustrate the
principle clearly, we will review the essential knowledge of crystal optics in the

following section.

5.1 Optics of Uniaxial Crystal

For a uniaxial crystal, there exists
4 a special direction, called the optic axis ( the z-axis of the crystallophysical

coordinate system);

4 The plane containing the z-axis and the wave vector K of the optical beam is

called the principal plane ( P.P.).

If E (w) L P.P. , the light beam is called the ordinary wave (o-wave) of the crystal,

which experiences an index of refraction n, that does not depend on the direction

A

of K .

However, when E (w)//P.P., the light beam is called the extraordinary wave

(e-wave), which experiences n,(€) with magnitude depending on the direction of K.

Let us define

o 0, when K//Z
Birefringence =An=n,(0)—n, = o 4
n,—n,=An, when K1Z

The refractive index of the e-wave is a function of the polar angle € of the vector
I_(' . Z A

n
1 cos’@ sin’@
From: 3 = 3 3
n,(6) n, n
l 1+tan’@

1+ (n—")2 tan’
E

= ne(9)=n0\/




Examining the curves of index of refraction on the principal plane,

Z,
P.P. i, K
n,>n,
ﬁ 0 n,(6)
o g Mo X(Y) B=n,—n,<0
= negative
nO
Zy - n,<n,
K
n n,(6)
/
ng B=n,-n,>0
k n, )E'(Y) = positive

For a planar light wave propagating in a uniaxial crystal, K does not coincide

with that of the wave energy § (the unit vector normal to the tangential at the

intersection position of K and the surface of the refractive index)

ZA
K

isotropic

v
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(away from AN
Y

\\optic axis)
ng -
negative

positive

Here § is normal to the tangential drawn at the point of intersection of vector K

with the 7.(0) curve.
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HE=K—(E-K)E
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E, (o—ray) always 1K = S/K.But E, (e—ray) lies in the P.P.

= S ) K , L.e., a beam walk-off phenomenon can be observed. The corresponding
walk-off angle p can be found to be

p(6)=*tan™ |: ( n, Upper sign for negative crystals

Ry

)’ tan 0] Fo

Lower sign for positive crystals
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By measuring the beam walk-off distance &, we can determine the crystal cutting

angle 6., which can be understood by noting that

0=L-tanp =6, =tan

. I(na/nE)z—lzlLi [(n"/';E) —1]4L .y
26(n,/n;) 46°(n,/n,)

6.2 Types of Phase Matching with a Uniaxial Crystal

To fulfill the phase matching condition of a three-wave interaction in a uniaxial

crystal, differently polarized waves should be used.

Negative Crystal: n, >n, (o+o —)e) : 1201 +I_{’o2 = 1283(49)

Positive Crystal: n, <n, (e +e —)0) : 1281(0)+ 1232(0) = 1203

(b) Type- I phase matching scheme (the mixing waves have orthogonal



polarizations)

, o+te—e) |K, +K,,0)=K, ()
Negative Crystal: R - .
e+o—e K, 0)+K,,6 =K, (6)

1

o+e—o0 K +K ()=
Positive Crystal: [ } { ol 2(0) 03}

e+o—o . ﬁe1(9)+1?02 1?03

For second-harmonic generation, @, =@, =@, @;=2®

Type-I 04+0 — e interaction in a negative crystal

Z Z
n,(20) K 1, (20 7
n,(a)
9 2n (@)
Type-1
\”‘m ype- _ \a,pm Type-II
n,(20) 1,(®) B n,(20) 1,(0)+n,(@)
0,(w)+0,(w) > eLw)
n (@) Z+n ()2 =n 20,622
C C c

Type-I: n,(®)=n,2w,0,,)

Type-1I: n,(®)+n,(®,6,,)=2n,21,0,,)

pm

6.3 Effective Optical Nonlinearity in a Phase-Matched NLO Process

In the crystallophysical coordinate system {X, Y, Z}, where Z is the optic axis,

P”(In the crystal frame) = 7, 'E E,

To find out the effective optical nonlinearity observed in the lab frame,



2 _» _’_A 2.2 A 2
I)eff =€ P= (eout : Z * einein)

2
— 2(2)
- zeff |Ein

Ein

[1x3| [3x6| [6x1]

we can either transform x>

. into the lab frame or express E, and e, interms
g in out

of the crystallophysical coordinate system.

4 Z(opt.)
. \ Ae 2] :
(sing,—cos¢,0) Po ’ / / /I Y:
‘u
X (cos g, sing)

Since any linearly polarized wave in a uniaxial crystal can always be represented as a

superposition of two waves with ordinary and extraordinary polarizations, we can

express the components of a unit vector P given by polar coordinates 0, ¢ along the
crystallophysical axes X, Y, and Z,

sin ¢
o-ray I_’:, =| -cos¢@
0

-cosf@cos ¢
e-ray P, =| -cos@sin 0

e

sin@

therefore, Ze(f;) = z (i;‘mt )i * I:Z;i) : (I_;m )J’ (I_;m )k :I :

ijk

We illustrate the principle with some case studies:

Example 1

For KDP (42m) in Type- 1 PM [(o+0 —¢)

(2) _ A2) L A2 _ ,(2) -9
lXYZ _ZYXZ =ZXZY _ZYZX =2.6x10""esu

22 =72 =2.82x107esu



sin® ¢
cos’ ¢
0
0
0

-sing@cos ¢

(I)o 1 I)o 2 )contracted =

1 2 3
For Type- I PM (0+0 —e)

(2)

Ze ¢ = é\3 : /?: (OAI 62 )comracted
=—y.2, sin@sin2¢
=-2.74%x10" esu
0o00rnr, 0 O
y@2m)=[{0 0 0 0 r, 0
000 0 0 ry
Example 2

( C,, poled polymer )

0 0 0 0 ., 0
=0 0 0 z. 0 ol
131 131 ZS3 0 0 0

(i) For Type-I PM (negative)

_A S(2) A A
xeff =é;- Z ¢ (0102 )contracted

= (—cos @cos 8,—sin gcos 8,sin §)[ y'*']

(i1) For Type-I PM (positive)

sin’ ¢
cos’ ¢
0
0
0

—sin@cos @

Note: allow sin2¢ to be max. with ¢ = 45°,

Xu =Xis Kleinman Symmetry

= ¥,5Sin@

A 202) 2 n _
Zeff - 03 : Z * (ezel )contracted - 0

X5 does not contribute to PM SHG




6.4 Sum-Frequency Generation with Boundary Reflection
[Ref.: N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606-622 (1962)]

Consider @, + @, = @, = 0, = @, + @,

f(’m YA

K, (free SF)

K (source vector)

Pz\(zi)(ws) = I(Z)ElTEzr :

i(Kyp+Kyp ) r—i(@ +@,)t

®

e

iR i
@ Z =Z(2)E1TE2T -ets e

K

u
K

boundary \incident plane (XZ)

21

To make the problem solvable, we are going to make some assumptions
All waves involved are plane waves
Non-depleted incident waves
Planar boundary (XY plane)

Neglect anisotropic propagation property of the nonlinear medium

E ? drw? oL _ oL
VX[VXE(®,)]—- (6;’32_)603 ‘E(wy) = 7:?—3 PN s = 4l PN ™5 T

~ (/) — = .
Here @, =—, K., =K., P =y®E_E, .The complete solution of the above
3 3s s i Eor P
c

equation can be expressed as a summation of homogeneous solution and particular

solution with

» Homogeneous solution = Linear combination of a set of plane waves of free SF

with the coefficients to be determined by the boundary conditions

>  Particular solution denotes the bound SF waves withK , , K ¢y determined by the

SX °

direction of the incident beams K ., K ? . The constraint is due to that on

reflection and refraction, the transverse components (tangential to the interface)
of momentum are conserved because the boundary conditions must be satisfied

everywhere on the plane Z = 0.

1 1 T T

st =K,y +K,, =K, + K,y =K, +K,;
1 1 T T

Ky, =K, +K,, =K,, +K,, =K,, +K,,




After entering into the nonlinear medium ( Z =0 ), the incident waves induce a
nonlinear polarization P . The radiation source can emit SF photons at @ .

However, only those radiated free waves (assume to be planar waves) which have the
same tangential wave vector components are acceptable to be included to match the
boundary conditions. This determines the direction of the free waves, acceptable as
homogeneous solution.

The direction of the inhomogeneous solution or polarization wave is determined

by its normal component because | K = K + K| and from

T T T T

KsX =K1X+K2X and KSY =K1Y+K2Y ; l
= KSZ ZKT = KT + KT — . norma components

transmitted into the NLO

medium

Let the incident plane is XZ plane, i.e. K, =0.

Let us distinguish the following two linearly independent cases with (A)

PYNLS = PLNLS and (B) P, (on the XZ plane).

NLS NLS _iK-F
P/ =P " e™”

(A) = (X)) EvEs e (KD The wave eq. becomes

VE, + @}, (w,)E, =V'E, +|K,| E, = —47@P)"e™s"

th

Let the particular solution be E, = Ae™*" and substitute into the above equation

[—|KS|2 +|KT|2],A.eiIZS-? _ _47z_é~)§PlNLsei1ZS.;

47w6)?
~A=— 5  pMs
|KS|2_|KT|2 ’

The complete solution then becomes

ar@: P

—-e
‘KS‘ _‘KT‘

iKg-r

E, =ATe® 7 4
E | perpendicular to K’

«/e(a) \/— " 6,

&r|-a




K" represents the transmitted homogeneous solution with K; =K, .

(ii) A] is determined by the requirement that tangential components of E and
H are continuous.
(ii) However, to meet these boundary conditions, a reflected wave at @,

emanating from the boundary back into the linear medium shall be included,

ER o . (1)) ~
Ef =Afe™"” with K} =K} =K, and |K*|==2n,(w,)= @,
c

e T
1 |KS|2_|KT|2 e from EY IZ 0 EY IZ=0

Thus

|K |4z} P

@,n, Al cos@, + cos@, =—-@,n A} cosb,|.

2 2
|K S| ~ |KT|
cos@, refersto K cos@, refersto K*
Note that S 1 and X
Furthermore, from H, —continuity| A7 and Al can be determined
1 c|K,
A =—-4zpPM - where ng = X
(n, cos @, +n, cosb,)(n, cosf, +ng cosby) ,
NLS
AT = 4zP " ngcosf +n,cosb,
L

& —€&; n,cosf, +n,cosf,

(B) Parallel Polarization P (on XZ plane)

I %
K, -

R

NLS
P,

/ /4
0 6y | 7646, p,
1/ - A p

K R KT K Izs (source or bound

wave )

R ( free SF wave )




V-D=V.[E,+4zP" K +4zP? -K]=
=& E, parallel to K
Note: .
- 4zP,>
= E, (@) .
& (@)

E, —component :
4z &(P)" - py)cosfy _4m(P)" -K,)sin b
2 2
K[ -, | &

T _ R
A, cos6, + =-—A,, cos G,

H, —component :
Az & (P - py)

K"A, +K
/! S |KS|2_|KT|

= K®AR = (K*x A%),

By solving the simultaneous equations, we obtain

AT = 4z . (P .K,)sinG,n, _ (ng cos 6, +ng cos 6 )P . py)
" n,cos@, +n, cosd, £ (&5—&)
Parallelto K ‘;d on the Perpen;i\c.llar to K
incident plane
AR = 4z (P¥S . K,)sin@, (n, cos —ngcos@,) (P - p,)
" n,cos@, +n, cosd, £ (& —&)

6.5 Bulk Sum-Frequency Generation

For the case of sum-frequency generation from the bulk of a nonlinear medium, we

can exploit the slowly varying amplitude approximation (SVA). This leads to

1. P™ is perpendicular to the incident plane

2
aa_zE (2)="22% 17;5)3 PMSe™ % where AK =K —K' = (K" +K')~ K’



2. P™¥ lies in the incident plane

d - i
a—z[eTE,, +4m(P)" K )e™ *1=0

2T @

(AK)K!
4z(P,-K,)

E ()=E, (0)+ (e —1ppPM

E//(Z)=E//(0)— (eiAKz _1)

T

Note:

>>1, then |E,|<<|E,]

it ‘ﬁ
AK

cos ;)

Is(Z)=%|E(Z)|2 (Note: K;:wﬂ/g

__ o pp| 2
c\/gcoseT AK -

15,(Z)

Coherent length

AK"ecoh=7r = ’ecoh=i
AK

(AK-Z)

6.6 Sum-Frequency Generation with High Conversion Efficiency

For sum-frequency generation with high conversion efficiency, the following
conditions must be fulfilled:

(1) the coupled waves are collinearly phase matched ( AK =0 )

(2) the medium is lossless ( o, =0 )

(3) slowly varying amplitude ( SVA )



The incident waves will be depleted due to strong conversion that requires the three

coupled differential equations to be solved simultaneously.

( m.k.s e esu ? 2
aEl _k l(l)l d E$E _ 27[[&)1 (2) . E$E
oZ - 2 2 1H2ts3 | = 20 K “Aeff 23
c’K,, cos” o cos" oK, ,
4aEZ moks iy e, | O 27 @ . p*
oZ - 2K 2 dzElEs - 20 K 'leﬂ 'E1E3
c’K,, cos” a, cos“a,K,,
) »4:EE,| = —— Xy ‘EE,
oZ c’K,, cos” a, cos” o, K,
C

where o, = walk off angle of beam i, and
@ _5 2.

X=X 16,8,
2) _ 4 2) .45 5
Zejj" 2 T6 X I6e

(2) A 2) .52
Xps=6 X €6

In alossless medium,d, =d, =d, =d (why?).

a=0a,=0 ( Type —1 negative crystal ) .
Let a, = B =walk off angle ( 0+0 > g) and define

W =

2z () o, ,

i{KIZ |El|2 + Kzz |E2|2 + Ksz cos’ ﬂ|E3|2}

= 2”{ |E | +n |E | +n,cos’ |E | } constant, which is independent of Z.

This is the Manley-Rowe Relation, implying that the number of photons annihilated

at @, and @, =the number of photons created at @,

For convenience, we can use W to normalize the optical field amplitudes

f / ZI;V E(Z)=u," =square root of the normalized photon
density at frequency .
) I . ) I, . . I, ;
i _ | ia i — |12 e i _ | L e
Thus "€ = a)lil)V e, ue” = oW e, u,e” = o e

with 0(Z2)=¢,(Z)—¢,(Z)—¢,(Z)




Properly normalize the propagation distance Z with Z; to yield a dimensionless

distance-related parameter

27W o @, @2 2% Z
5 = 2 2 ) _Zzeff : Z =
c’K,,K,,K,,cos" B ¢ Z,
Finally
[ du .
d_c,; =—u,u, sin @ 1)
du ]
d—é_f =—u,u,sinf ?2)
1% _ yusing 3)
d
dae _| Wty WUy Ul cos O (4)
d§ us u, u,

By using Egs. (1), (2) and (3), Eq. (4) can be reduced to

deo 1 1du; 1 1du, 1 1du,
— = ——+ ——+ — cos@
dé \sinfu, dé sin@u, dé sinbu, dé
=cotf- dien(u1u2u3)

¢

This is a complete differential, we therefore can simply integrate the phase equation to

yield tan@d6=d ln(uu,u,) = —d[fncos®]=dln(uu,u,).

r

(w,u,u,)

cosf(Z)= with an integration constant I.

This leads to

Several invariants can also be found, including
(1) T'=u,(0)u,(0)u,(0)cos8(0) with 8(0)=¢,(0)—¢,(0)—,(0);

(i1) Energy conservation: @, = @, + @, ,

(iii) power normalization @u; +@,u; +@u; =1 and



u, XEq.(D+u,xEq.(3) = |m, =u;+u, The invariants reveal the

(iv) u,XEq.(2)+u,xEq.(3) = | my =u; +u; Manley-Rowe Relations

u, xEq.(1)—u,xEq.(2) = |m,=u-u;

du .
From d—3 =u,u,sin@ , we rewrite

d&= du? _ du, :
u,u,sin @ ; r
u.u -
172 (u1u2u3)2
N §=1J4u§(§) d(ui)
29430 \/u32(m2—u_,f)(ml—usz)—l"2

The denominator polynomial can be rewritten as (u” —u;, )(u® —u3, )(u’ —uj,) in

: 2 2 2
terms of its roots u;, 2u;, 2u;, =20.

u, —u’ uw, —u:
By defining y*’=——23, y=-3t_3¢ we then obtain
Uy, — Uy, U —uy,

y(& dy

§= 1 {J- _J'y(o) dy }
Jui—ud |70 Ja-yha-yyh P Ja-yHa-yy?)

The integrals can be related to the Jacobian elliptic functions, which are defined as

follows
. sing dy
u(sing,y)=F(9,y) = .
! Ja-y)a-yyh
By taking the inverse function Sn(u, ) = sin ¢ of u(sing, y),

. Sn dy
ie., u=
l Ja-y)a-yyh

Note: 7°(Sn)* +(dn)* =1. When y=0, Sn(u,y=0)=sinu.

In terms of the Jacobian elliptic function S, the solution becomes
y© =l Jwl, - )& +&), 7],

Note that u; =ul +(uj, —u3,)y*, we then obtain the solution for the three-wave



mixing processes with depleted pump beam as

ul(&)=u;, +(uj, —u;,)Sn’ [\/(ui —u; ) (E+E), 7]

uy (&) =m,—u;(&) =u;(0)+u(0)—u; (&)
u; (&) =uf (0)+u3(0)—us ()

1 . 1
where & = WF (sin™ y(0), »)
3c 3a



Some examples
1. Frequency Up-conversion

Up-converted beam a,

n

Weak a,

e

Strong pump @ NLO

Input conditions:

Jrequencies : o, + @, - ,

input fields u,(0)+u,(0) = u,(0)
u;(0) << u;(0)
u;(0)=0

= I'=u,(0)u,(0)u,(0)cosf(0)=0

The three roots of u;(m, — ui)(m,— u:)-I* =0 areu, =,/m,, m,, 0.

Therefore, |u,, =0, u,, =\m, =u,(0), u,, =/m, =u,(0).

The solutions become:

u; (&) =u;(0)Sn*[u, (0)(E+¢,),7]

u(&) =u(0) [1 —Sn*[u,(0)(E+E,), 7]]
uy (&) =uf (0)—u; (0)Sn’*[u,(0)(E+&),7]
(u?fb _uga) = ug(o) <
(s, —uy,) 1/ (0)
(Sn[u,y]=sin(u) when y<<1
_ ) -u) w3 (0)

(3, —u3,)  u(0)

<1

Since ¥’ =

Therefore < y(0)

L50=0

Inverting the normalized variables to obtain the field intensities:



2

A

I1,(z)=1,(0)

where —
E

u

I()——
@, co

2(0)
SB

1,(z) = 12(0)cos2(£i)

u

=u,(0)¢ =

(—)

3 2 2 .2
87TV o w; w,

1(0)
oW \c°K K, K,, cos’ B

(2)
Zeff <

2. Second — Harmonic Generation (SHG)

Initial condition: {

u;(0) = u;(0)
uy(0)=

0 >

I'=0

The denominator polynomial inside the radical of the integral

2 2 2 2 2 252
uz(my,—uz)m, —u;)—I" =u;(m, —u3)

Therefore, the integral becomes:

wy(@ duy 1

wO® m, —u;  u,(0)

)

u,(S)

u,(0)

|

Converting back to the beam intensities

_L®@a
11‘(‘0)a)3

Is(z)=(w

). 1,(0)
cos’ B

207 tanh? (=

1,(z)=1,(0)sec hz(ei)

u

1,(z)=1,(0)sec hz(ei)

u

12

u

—)




L) _ o

With for equal photon number
1,(0)
When @, =w,=@ and @,=2w,then I,(0)=1,(0)= %Iw(ﬂ)
1,(0) 2, 2
1, (z) =—%—tanh
20(2) cos’ 3 (ESH)
1,(z)=1,(0)sech’(——)
eSH

1 MW
=4.7x107 /I - with 7% =1.5%10esu
ESH w( cm2 ) leff

3. Optical Parametric Amplification (OPA)

u2(0)=0 =T'=0

Initial condition: {
u(0) << u;(0)

a)2
CU1 _— ﬁ wl

NLO

Three roots are determined to be

u32a =0,

u:fb =m, = uj 0)

u_,fc =m, = u32(0) + uf(O)
u;(0)—u;,

y(0)=—5

2
Uz, — U5,

L oz L
Note Fl:sm y(O),;/]-F[Z,}’] K(y)

=1

g=—F _ _K®
Ve -k Jwd -ud)
u;(0)

and =——— " =photon number ratio of input beams
7 o o) P P

The solution for the pump beam becomes



@) =, + = )57 ik i, (E+ £, 7]
[ K(y) ]
=u2(0)Sn?| \Ju2(0)+u>(0)(&+ ) ¥
u2(0)+u’(0)
=u’(0)Sn’ [ u;(0)+u (0)E - K(y), 7’]

Let cos’ B=1 toneglect the walk-off effect
Then:

I1,(z)=1,(0)+ (ﬁ)13(0){1— Sn* [M, 7]}
1)) £

3

11,(z)= (%)13(0){1- Sn? [@ 7]}

Is(z)ﬂs(o)Snz[(z —Ezo),y}

L

2 _u,(0)¢
/4
h
where o w0
£ /4
I, cosh? (%)
A !

> 7/l

(i) When |§| <<1 for negligible pump depletion and

ul, u<<u; = y-1

Note: @, (13(0)] 1 (O)L
o, 1-y



[ Y _o[E=2)
L@ =LO+ T L -sn | EE0y

Therefore: {1,(z)=(—* 2)( 72},2 ), (0){1—5112 [(Z_—EZO),}’]}

13(1) — 13(0)Sn2 |:(Z —Ezo) ’7:|

L

4 2| (z=2z,)
Note: (—72) 1-Sn? , Y4 ) >y Sn’ (£)

. 2, %
=sinh“ (=)
an*(5) ¢

1,(z)= 11(0)c0sh2(%)

. AL@=1, (0)%sinh2(%)

2

I,(z) =1,(0)

(i1) When phase mismatch appears, AK #0

w2 m, —12)m, — )= (3N (m, — 2y’

2
= u, —(—)
ul, =m, =u’(0)
32 =u; (0)+u 0)
. %:\/”3(}(’?52-(?)2-z=,/1“3—(%)2-z
where T2 =50

72

I,(z) = I,(0)cosh?(, /1“5 —(%)2 ¥4
L,(z) = 1,(0) Z sinh?(,|T? —(ﬁ)2 ¥9)
@, 2

I,(z)=1,(0)

A

i.e., Parametric gain can be reduced by the phase mismatching.



Summaries of Nonlinear Frequency Conversion

1 9° - g, 0’E 47 0°P
VXVx+—— |E(F,t)+—~ ———Z 7N
( c’ atz] (r0) ¢’ at? c¢? at’
where P, (r,t)=y'”E*(r,t)
- 13 . X P.P.
Let E(ry)=-3(6,4,0,0e" ™" +c.c.) e-ray
n=1
By invoking SVA Jij
v . ® g hd >Z
M A, =il AAe A Y

= {M,A, =if,AAle™
M A, =i£ A Ae™”

where

~ _d 0 i ,0° 9* 190 0’

=—+p —+ + +——+ig, — +0,
TPtk Gty a T e O
27K, . A A
5n = n2 (eout .Z(Z) :einZeinl)

n

n

K, . A
o, :absorption loss = 2nn2 (e-1,¢g,-¢,)

n

P, :walk —off angle on the XZ plane

N . _1(9°K
g, :dispersion spreading = — -
2\ dw” )

u, : group velocity = (a—w)
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Effective lengths for the interaction process

d
(1) Aperture Length: L =—", d, =beam diameter
P

l P e—ray
d =——=—---- ’s - =» o—ray




(2) Quasi-static interaction length

1 1
L, =t(———)"=vr
ul u2
1 1
v=(—-—)"
u, u,

(3) Diffraction Length

L

= kd

2d, < Angular spreading due to diffraction

dif
do

2 2
T 27
L,=—= K\ pulse broadening effect
o [ > ] 7 =pulse width
0w )
H—l

material dispersion

(5) Nonlinear interaction length

1 . 27w
- : __, with £="72
EJEZ(0)+ E2(0)+ EX(0) n

L>L,, non-depleted pump beam assumption is incorrect

LNL

Designing Process for NLO devices:

(a) Determine all the effective lengths of the process, compare them with the length
of a nunlinear crystal, find out the effects that must be taken into account.

(b) Find the nonlinear interaction length, compare it with the crystal length, and
determine whether the fixed-field approximation is valid or exact equations must

be solved.



e.g., if L>L,,,then non-depleted pump beam is not valid.

If the crystal length, L, is smaller than each effective length, then

M, :>i+0',,
o0Z

The beam or pulse envelope of the radiation being converted is approximation by a

step-wise function, the field amplitude inside of each step being constant.

For each step, the conversion efficiency is calculated by the equations for plane
waves.

Then the results are summed with respect to the transverse coordinates (or time) and

the power of the beam (or pulse) of the resulting radiation is determined.

I(r,1)

,44/ S

Limitations of the High Conversion Efficiency
We can not increase the pump beam intensity by focusing the optical beam
indefinitely. This is because there are actually some limits on the focused beam:
(a) Optical damage threshold of NLO materials
(b) Effective interaction length (beam walk off) ~ This may be partially relieved by

using 90° -noncritical phase matching scheme.

Poor beam quality produces an ill-effect on the nonlinear conversion efficiency
(a) Hot spot — reduced effective interaction length
inhomogeneous medium

<§:>An<4—/1£510'5 Jor A=1um & L=1cm

|AK.£
2

Temperature uniformity

If 3—;~ 5%107°, then AT ~0.5°K = An ~2.5x107°



