Chap. 6  Singular Value Decomposition
6.1 Usages of SVD
1. Transforming correlated variables into a set of uncorrelated ones that better expose the various relationships among the original data items.
2. Identifying and ordering the dimensions along which data points exhibit the most variation.
3. Find the best approximation of the original data points using fewer dimensions(Data Reduction

Consider the 2-dimensional data points shown below. 
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[image: image60.emf]The regression line running through them shows the best approximation of the original data with a line, which is the line that minimizes the distance between each original point and the line.
If we drew a perpendicular line from each point to the regression line, and took the intersection of those lines as the approximation of the original data point, we would have a reduced representation of the original data that captures as much of the original variation as possible. If we drew a second regression line, perpendicular to the first, this line captures as much of the variation as possible along the second dimension of the original data set. However, it does a poorer job of approximating the orginal data because it corresponds to a dimension exhibiting less variation to begin with.
6.2 Basic ideas behind SVD: taking a high dimensional, highly variable set of data points and reducing it to a lower dimensional space that exposes the substructure of the original data more clearly and orders it from most variation to the least.
6.3 Example of Full Singular Value Decomposition
SVD is based on a theorem from linear algebra which says that a rectangular matrix A can be broken down into the product of three matrices - an orthogonal matrix U, a diagonal matrix (, and the transpose of an orthogonal matrix V .
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The matrices U and V contain orthonormal bases for all four subspaces:

First r columns of V:  row space of A
Last n-r columns of V: nullspace of A
First r columns of U:  column space of A
last m-r columns of U: nullspace of AT
The first columns 
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 in the nullspace are easier. As long as those are orthonormal, the SVD will be correct.
Let us start from
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To prove that 
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The columns of U are orthonormal eigenvectors of
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 , the columns of V are orthonormal eigenvectors of 
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, and ( is a diagonal matrix containing the square roots of eigenvalues from U or V in descending order.
Consider 
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Find the eigenvalues and corresponding eigenvectors of 
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The set of equations becomes 
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A nontrivial solution occurs when
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Finally, we have to convert this matrix into an orthogonal matrix which we do by applying the Gram-Schmidt orthonormalization process to the column vectors.

Begin by normalizing
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Normalize 
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The calculation of V is similar. V is based on 
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The system of equations is 

[image: image48.emf], which has a nontrivial solution when
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For 
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Use the Gram-Schmidt orthonormalization process to convert the eigenvectors into orthonormal set
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This gives us
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For ( we take the square roots of the non-zero eigenvalues and populate the diagonal with them, putting the largest in (11, the next largest in (22 and so on until the smallest value ends up in (mm. The non-zero eigenvalues of U and V are always the same, so that's why it doesn't matter which one we take them from.
The diagonal entries in S are the singular values of A, the columns in U are called left singular vectors, and the columns in V are called right singular vectors.
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Finally
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Application Examples of SVD: 
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Applications of the SVD


Marc Spiegelman


Detail from Durer’s Melancolia, dated 1514., 359x371 image
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Image Compression


Given an original image (here 359 × 371 pixels)


Detail from Durer’s Melancolia, dated 1514., 359x371 image


We can write it as a 359 × 371 matrix A which can then be decomposed via the


singular value decomposition as


A = UΣV
T


where U is 359 × 359, Σ is 359 × 371 and V is 371 × 371.
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The matrix A however can also be written as a sum of rank 1 matrices


A = σ1u1vT


1
+ σ2u2vT


2
+ . . . + σnunvT


n


where each rank 1 matrix uiv
T


i
is the size of the original matrix. Each one of


these matrices is a mode.


Because the singular values σi are ordered σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0,


however, significant compression of the image is possible if the spectrum of


singular values has only a few very strong entries.
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Spectrum of Singular values for A
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Here the spectrum is contained principally in the first 100–200 modes (max).
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We can therefore reconstruct the image from just a subset of modes. For example


in matlabese we can write just the first mode as


[U,S,V]=svd(A)
B=U(:,1)*S(1,1)*V(:,1)’


Detail from Durer’s Melancolia, dated 1514., 359x371 image EOF reconstruction with 1 modes
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Or as a sum of the first 10 modes as


B=U(:,1:10)*S(1:10,1:10)*V(:,1:10)’
Detail from Durer’s Melancolia, dated 1514., 359x371 image EOF reconstruction with 10 modes


which only uses 5% of the storage (10 × 359 + 10 × 371 + 10 = 7310 pixels


vs 359 × 371 = 133189 pixels.
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Adding modes, just adds resolution


B=U(:,1:20)*S(1:20,1:20)*V(:,1:20)’
Detail from Durer’s Melancolia, dated 1514., 359x371 image EOF reconstruction with 20 modes
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Adding modes, just adds resolution


B=U(:,1:30)*S(1:30,1:30)*V(:,1:30)’
Detail from Durer’s Melancolia, dated 1514., 359x371 image EOF reconstruction with 30 modes
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Adding modes, just adds resolution


B=U(:,1:40)*S(1:40,1:40)*V(:,1:40)’
Detail from Durer’s Melancolia, dated 1514., 359x371 image EOF reconstruction with 40 modes
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Adding modes, just adds resolution


B=U(:,1:50)*S(1:50,1:50)*V(:,1:50)’
Detail from Durer’s Melancolia, dated 1514., 359x371 image EOF reconstruction with 50 modes
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Adding modes, just adds resolution


B=U(:,1:100)*S(1:100,1:100)*V(:,1:100)’
Detail from Durer’s Melancolia, dated 1514., 359x371 image EOF reconstruction with 100 modes
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Adding modes, just adds resolution


B=U(:,1:200)*S(1:200,1:200)*V(:,1:200)’
Detail from Durer’s Melancolia, dated 1514., 359x371 image EOF reconstruction with 200 modes
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Application 2: EOF analysis


Pattern extraction—Mid-ocean ridge topography


Here we consider a real research use of the SVD by Chris Small (LDEO)


A Global Analysis Of Midocean Ridge Axial Topography


GEOPHYSICAL JOURNAL INTERNATIONAL 116 (1): 64-84 JAN 1994







E3101 2002 SVD Fun 14


120˚


120˚


150˚


150˚


180˚


180˚


210˚


210˚


240˚


240˚


270˚


270˚


300˚


300˚


330˚


330˚


0˚


0˚


30˚


30˚


60˚


60˚


90˚


90˚


-60˚ -60˚


-40˚ -40˚


-20˚ -20˚


0˚ 0˚


20˚ 20˚


40˚ 40˚


60˚ 60˚


80˚ 80˚







E3101 2002 SVD Fun 15


The data: cross axis topography profiles from


different spreading rates
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Form a matrix A (179 × 80) of elevation vs. distance across the ridge
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and again take the SVD A = UΣV T . Here U is the same size as A and Σ and


V are both square 80 × 80 matrices.
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Now the rows of V T form an orthonormal basis for the row space of A, i.e. each


profile (row of A) can be written as a linear combination of the rows of V T or


A = CV
T


which by inspection of the SVD shows that C = UΣ. Here, the rows of V T are


known as Empirical Orthogonal Functions or EOFs.
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Again, if the spectrum of Singular values contains a few large values and a long


tail of very small values, it may be possible to reconstruct the rows of A with only


a small number of EOFs. The spectrum for this data looks like
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which suggests that you only need about 4 EOF’s to explain most of the data.
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The first 4 EOFs
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And we can reconstruct individual profiles as combinations of the first 4 EOF’s.


For example here is one for a slow spreading rate
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EOF reconstruction, sample 10=(−2994.2,−3475.3,−2403.3,−148.1)
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Intermediate spreading rate
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Fast spreading rate
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