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Chap 1. Intro. to Partial Differential Equations (PDEs)

(O 1.1 Conservation laws for governing equations of multiphysics simulations

Many PDEs for mathematical simulations come from a variety of conservation laws,
which state that a particular measurable property of an isolated physical system does not
change as the system evolves.

Here are some conservation laws that are useful to generate governing PDEs for simulations:
1) Conservation of mass: the total mass of a closed system of substances remains constant.
2) Conservation of energy

3) Conservation of linear momentum

4) Conservation of electric charge

(O 1.2 Using conservation law to generate governing equations of multiple physics
simulations: A General Formalism
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The conservation law of the scalar can be expressed as
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where the first term indicates the change of scalar quantity enclosed in QCT) , the second

term denotes the gain/loss of the quantity via flow across the boundary 20.CF) . The term on
the right-hand side is the generative source q of u(r, t) in the domain.

We can invoke the Reynolds transport Theorem on the first term
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The first term on the right-hand side reflects the direct change of the time-varying quantity u
inside the domain at time t; whereas the second term indicates the gain/loss of u through the
moving boundary in the time interval of (t, t+dt).

We want to rewrite the second term of a surface integral to a volume integral. This can be
done by using Gauss (dlvergence) laW
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From DuBois-Reynolds lemme, at every position in 266 , the u satisfies the PDE
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is the governing PDE for thermal conduction phenomenon.

() 1.3 Specific example of mass balance

Conservation of mass can be extended to a mass balance for an accounting of material
entering and leaving a system.

Consider a system
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() 1.4 Physics-related PDEs
S
1) Laplace’s equation of a dependent field variable {DC r)
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Laplace’s equation is an important equation occurring in studies of
a) source-free electrostatics

b) irrotational flow of perfect fluid

c) heat flow

2) Poisson’s equation of a dependent field variable 2[)(?)
v =- P, ,
which describes electrostatics with a source term  « f Cr )/ &,
3) Helmholtz equation V7> (¥ + K wc?) =0

which appears in describing propagation of either electromagnetic waves or elastic (i.e.,
acoustic) waves,
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4) Time-dependent diffusion equation
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5) Time-dependent wave equation
) P ) 1 l 91(0‘? )
6) Klein-Gordon equation [ 2% C?Jf)
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which is the (Schrodinger equation related) relativistic wave equation, derivable from
quantized form of relativistic energy-momentum relation.

7) Time-dependent Schrodinger equation
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8) Other equations for describing elastic wave propagation, movements of viscous
fluids

() 1.5 Classification of PDEs

Most of the governing equations in physical models are second-order partial
differential equations (PDEs). For generality, let us consider the PDE of the in a 2D

domain JZ(x »Y)
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where A, B, C, ..., G are either constants or may be functions of both independent
variables (i.e., X, y) and/or dependent variable u(x, y) .
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u(x, y) forms a solution surface above/below the x-y plane.

Equations (1) and (2) can be combined and rewrite in a matrix form
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Uxyx , Uxy , Uyy could be discontinuous (i.e., indeterminate) when
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Here (dy/dx) denotes the characteristic curves on the solution surface u(x, y).

Solving equation (3) gives the equation of the characteristics in physical space (X, y) as
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which could be either real or imaginary (complex conjugates).
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Thus, the second-order PDEs can be classified according to the sign of &~ #AC
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a) Elliptic PDEs: B~4#AC < O | the characteristic curves do not exist, such as
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In this case, the solution surface u(x, y) is bounded in {2(%,¥) with a closed boundary 942
(curve or surface). Unique solution exists when specifying
u on 9 | or
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b) Parabolic PDEs: B-#AC=0 | only one set of characteristics exists, such as
for 1-D time-dependent diffusion equation
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are required to defined the unique solution.

For problems in which real characteristics exist, a disturbance can propagates only over a
finite region. A signal at a point O in {2 can be felt only if it is originates from a
finite region call “the zone of dependence” of point O. The down stream region affected by
this signal at O is called “the zone of influence” of point O.

¢) Hyperbolic PDEs: R —44¢C >o

Two sets of characteristics exist, such as the 1-D wave equation in (X, t)
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Unique solution is defined in the open region ( £ , -®<t < @ )

Both initial condition U ,t=0) = o)  am G Ulx,T0) = Z0O
and boundary conditions
UCx=R, D, UCxbt) or Un(x=4,t) , Un (x=b, )

are needed to determine the unique solution.
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