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Topics 1: The Semiconductor in Equilibrium

Derive the thermal-equilibrium concentrations of electrons
and holes in a semiconductor as a function of the Fermi energy.
Discuss the process by which the properties of a

semiconductor material can be altered by adding specific
impurities to the semiconductor.

Determine the thermal-equilibrium concentrations of electrons
and holes in a semiconductor as a function of the
concentration of dopant.

Determine the position of the Fermi energy level as a function
of the concentrations of dopant added to the semiconductor.



1.1 CHARGE CARRIERS IN SEMICONDUCTORS

1.1.1 Equilibrium Distribution of Electrons and Holes

The distribution (with respect to energy) of electrons in the conduction band 1s given
by the density of allowed quantum states times the probability that a state 1s occupied
by an electron. This statement is written in equation form as

n(E) = g(E)fr(E) (4.1)

where f(E) 1s the Fermi—Dirac probability function and g.(E) 1s the density of quan-
tum states in the conduction band. The total electron concentration per unit volume

ability that a state is not occupied by an electron. We may express this as

p(E) =g (E)[l — fr(E)] (4.2)

« aplot of the density of states function in the conduction-band g.(E), the
density of states function in the valence-band g,,(E), and the Fermi—Dirac
probability function for T > 0 K when Er is approximately halfway between E.
and E,,.

e fg(E)for E>Ef is symmetrical to the function 1 - fz(E) for E < Er about the
energy E = Ef.
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Figure 4.1 | (a) Density of states functions, Fermi—Dirac probability function, and areas representing electron and hole
concentrations for the case when Ep is near the midgap energy: (b) expanded view near the conduction-band energy;



1.1.2 The ny and py Equations
Thermal-Equilibrium Electron Concentration n

ny = / e.(E)f,(E) dE (4.3)

gap. F:;:rr electrons in Lt.he conduction band, :J»:e have E = E. It (E, — Ep) >>HJE(T, then
(E — Er) > kT, so that the_ Fermi probability function reduces to the Boltzmann ap-
proximation,' which is
—(E— E
JHE) = = exp [ [ r) ] (4.4)
(E — Ep) kT

| + cexXp T
Applying the Boltzmann approximation to Equation (4.3). the thermal-equilibrium
density of electrons in the conduction band is found from

o0 Yy 5(‘12 —_ —
ny = f ) VE-E, exp[ L E”] dE (4.5)
E,
] # 3/2
N. = 2(*"“’2—”] (4.10)

The parameter m; is the density of states effective mass of the electron. The thermal-
equilibrium electron concentration in the conduction band can be written as

_(Ec T EF)
kT

The parameter N, is called the effective density of states function in the conduction

(4.11)

ny = N, exp




Thermal-Equilibrium Hole Concentration The thermal-equilibrium concentra-
tion of holes in the valence band is found by integrating Equation (4.2) over the
valence-band energy, or

~ [ /B — fu(E)| dE 4.12)

For energy states in the valence band, E < E. If (Er — E,) > kT (the Fermi function
is still assumed to be within the bandgap). then we have a slightly different form of

the Boltzmann approximation. Equation (4.13a) may be written as

| — fdE) = IE —% mexp[_( F B] (4.13b)
I+exp( FkT )
2mmikT /2
N, =2 4.18)

which is called the effective density of states function in the valence band. The
parameter m, is the density of states effective mass of the hole. The thermal-

equilibrium concentration of holes in the valence band may now be written as

po = N, exp

The magnitude of N, is also on the order of 10" cm™ at T = 300 K for most



Comment: The parameter values N, at any temperature can easily be found
by using the 300 K values and the temperature dependence.

Note that the value of N, for GaAs is smaller than the typical 10'° cm ™3 value
due to the small electron effective mass in gallium arsenide.

Table 4.1 | Effective density of states function and density of states effective mass values

N. (ecm ) N, (em) mzfm, m fmg
Silicon 2.8 X 10" 1.04 x 10" 1.08 (.56
Gallium arsenide 4.7 = 10V T.0 > 10" 0.067 0.48
Germanium 1.04 > 10" 6.0 X 108 0.55 0.37
—(E,. — ER)
ny = n; = N.exp ( T d } (4.20)
and
_ _ _ _':E,r;' - El.;l
Po = p; = n; = N, exp T (4.21)
[f we take the product of Equations (4.20) and (4.21), we obtain
2 —(E. — En}} . [—(Em — Eu}]
n; = N.N, exp[ T exp % (4.22)
or
2 _ _[EC_EJ}_ [_Eg] 4.23
n’ = N.N, exp! T N_.N, exp T (4.23)

where E, is the bandgap energy. For a given semiconductor material at a constant
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Table 4.2 | Commonly accepted values of
matT = 300K

Silicon m=1.5x% 10" cm
Gallium arsenide n,= 1.8 X 10°em™?
Germanium n= 2.4 % 10" em-

e Comment: The intrinsic carrier concentration
Nn; can increase by over 4 orders of magnitude
as the temperature increased by 150°C.



1.1.4 The Intrinsic Fermi-Level

late the intrinsic Fermi-level position. Since the electron and hole concentrations are
equal, setting Equations (4.20) and (4.21) equal to each other, we have

N. exp[_(E E’*‘*J] N, ex p[_[Ej;; E”}} (4.24)

[f we take the natural log of both sides of this equation and solve for Ey, we obtain

_1 1 N,
En=1(E +E)+Lirm (F) (4.25)
From the definitions for N.and N, given by Equations (4.10) and (4.18). respectively.
Equation (4.25) may be written as
Er; > (E. + E,) + 1 kT In (m*) (4.26a)

1

The first term. % (E. + E,). 1s the energy exactly midway between E, and E,, or the
midgap energy. We can define

%[Ef' + -Eu) — Emidgap

so that

EFF T Emidgap —

3 m;
ZkT 111( o ) (4.26b)

n

The intrinsic Fermi level must shift away from the band with the larger
density of states in order to maintain equal numbers of electrons and holes. 10



1.2 | DOPANT ATOMS AND ENERGY LEVELS
The doped semiconductor, called an extrinsic material
e The phosphorus atom without the donor electron is

positively charged.
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Figure 4.3 | Two-dimensional
representation of the intrinsic silicon
lattice.
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Figure 4.4 | Two-dimensional
representation of the silicon lattice doped
with a phosphorus atom.,
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Figure 4.5 | The energy-band diagram showing (a) the discrete donor energy state
and (b) the effect of a donor state being ionized.
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Figure 4.7 | The energy-band diagram showing (a) the discrete acceptor energy state
and (b) the effect of an acceptor state being ionized.
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1.2.2 lonization Energy
ionization energy: the energy required to elevate the
donor electron into the conduction band.

es _ mtuv
s =1 (4.27)
dqr € 12 n

where v is the magnitude of the velocity and r, is the radius of the orbit. If we assume
the angular momentum 1s also quantized, then we can write

m*r,v=nh (4.28)

where n 1s a positive integer. Solving for v from Equation (4.28), substituting into
Equation (4.27), and solving for the radius, we obtain
2E2
=t dne (4.29)
[f we consider the lowest energy state in which n = 1, and if we consider silicon
in which €, = 11.7 and the conductivity effective mass is m*/m, = 0.26, then we
have that

r _
= 45 (4.32)

orr, = 23.9 A. This radius corresponds to approximately four lattice constants of

The donor electron is not tightly bound to the donor atom.

13



kinetic energy becomes

_ m*e*
L= Shyamer (4.35)
The potential energy is
_ _—e _ _ —m*e
V= dmer, (nh)*(4dme)? (4.36)

The total energy 1s the sum of the kinetic and potential energies, so that

E=T+V 2(nh)*(4me)? (437)

For silicon, the ionization energy is E = -25.8 meV, much less than the bandgap

energy . - e C e
I'able 4.3 | Impurity ionization energies in silicon

and germanium

Ionization energy (eV)

Impurity Si Ge
Donors
Phosphorus 0.045 0.012
Arsenic 0.05 0.0127
Accepiors
Boron 0.045 0.0104

Aluminum (.06 0.0102 14



1.3 | THE EXTRINSIC SEMICONDUCTOR

An extrinsic semiconductor is defined as a semiconductor in which controlled amounts
of specific dopant or impurity atoms have been added so that the thermal-equilibrium
electron and hole concentrations are different from the intrinsic carrier concentration.
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Figure 4.8 | Density of states functions, Fermi—Djirac
probability function, and arecas representing electron
and hole concentrations for the case when Er is above

the intrinsic Fermi energy.
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Figure 4.9 | Density of states functions, Fermi—Dirac
probability function, and areas representing electron and

hole concentrations for the case when Ey is below the 15
intrinsic Fermi energy.



1.3.2 The nyp, Product

—(E. — EF):|

o po = N. N, exp T

which may be written as

exp[

—(Er — E,)

kT

Ho po = N. N, exp [

_Eg]
kT

then have that, for the semiconductor in thermal equilibrium,

Nog Po = H;

|

(4.41)

(4.42)

(4.43)

16



1.4 | CHARGE NEUTRALITY

1.4.1 Compensated Semiconductors
A compensated semiconductor is one that contains both
donor and acceptor impurity atoms in the same region.

1.4.2 Equilibrium Electron
and Hole Concentrations

The charge neutrality condition is
expressed by equating the density
of negative charges to the density of
positive charges.

no + N, =p, + N}

Total electron
concentration

Thermal { Donor
electrons iy, electrons
(_A—. f g \
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donors lonized donors
------------------------------ lr.'
Un-ionized N, =N, —p,)
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holes { holes
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Figure 4.14 | Energy-band diagram of a compensated
semiconductor showing ionized and un-ionized donors
and acceptors.
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Thermal-Equilibrium Electron Concentration If we assume complete ioniza-
tion. n, and p, are both zero, and Equation (4.57) becomes

ng + N, = py + ny (4.58)
If we express p, as n;/n,, then Equation (4.58) can be written as
n, + N, = E—i + N, (4.59a)
which in turn can be written as
n,— (N, — Nyny, —n> =0 (4.59b)

The electron concentration n, can be determined using the quadratic formula, or

Ny = M + \/(M)_ + Hf (4.60)

Comment

(Nd - Na) > ni, so the thermal-equilibrium majority carrier electron
concentration is essentially equal to the difference between the donor and
acceptor concentrations.

the majority carrier electron concentration is orders of magnitude larger than
the minority carrier hole concentration.

18



Thermal-Equilibrium Hole Concentration If we reconsider Equation (4.58) and
express M, as n; /p,., then we have

p—{]"'N p[].+ Nd (4‘61{1}

Na B Nr Nﬂ' N, 2 .
Po = fj + \/( 3 d) +n; (4.62)

Comment

If we assume complete ionization and if (Na - Nd) > ni, then the majority
carrier hole concentration is, to a very good approximation, just the
difference between the acceptor and donor concentrations.

1.5 | POSITION OF FERMI ENERGY LEVEL
1.5.1 Mathematical Derivation

E —E, —kTIn [ﬁ]] (4.63)
E —E, — len(N) (4.64)
d 19



Electron energy ——

Er — Er, = kTn (72)

— Ni"
E, — E,= kT (p?)

Er — Er = kTIn (£2)

I

(a)

(4.65)
(4.66)
(4.68)
E
__________________ Ep,
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B
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Figure 4.17 | Position of Fermi level for an (a) n-type (N; = N,) and (b) p-type (N; = N,)
semiconductor.
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1.5.2  Variation of E. with Doping Concentration and Temperature
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Figure 4.18 | Position of Fermi level as a function of donor
concentration (n type) and acceptor concentration (p type).

Comment

If the acceptor (or donor) concentration in silicon is greater than
approximately 3 X 107 cm3, then the Boltzmann approximation of
the distribution function becomes less valid and the equations for the
Fermi-level position are no longer quite as accurate.
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