
REVIEW SUMMARY
◥

BATTERIES

The nanoscale circuitry of
battery electrodes
Changbao Zhu, Robert E. Usiskin, Yan Yu, Joachim Maier*

BACKGROUND:Developinghigh-performance,
affordable, and durable batteries is one of the
decisive technological tasks of our generation.
Designing such batteries requires more than
just the identification of electroactive storage
materialswith desirable properties such as high
voltage, high capacity, and sufficient stability.
These materials must also be assembled with
ion- and electron-conducting phases into a
composite electrode architecture, and this step
is of equal significance; the size, shape, and
spatial distribution of the various phases have
a decisive influence on the charging and dis-
charging rate capability of the electrode. Be-
cause the combinedmotionof ions andelectrons
within the solid is notoriously sluggish at room
temperature, reduction of the transport length
by downsizing the storage particles is indis-
pensable. However, this necessity shifts the
transport problems to the electrode’s internal
circuitry. That is, every electroactive particle

must be part of a network that rapidly pro-
vides both ions from an electrolyte and elec-
trons from an electronic current collector. If
nanosized particles are used, then a myriad of
particles and connections are required, result-
ing in a network with a degree of nanoscale
intricacy comparable to that of electronic
circuits in information technology or bio-
electrochemical networks in living systems
(see the figure). While electronic circuits
are based on electron transport and bio-
electrochemistry relies on ionmotion, battery
electrodes require a combination of electron-
conducting, ion-conducting, andmixed-conducting
phases.

ADVANCES: Criteria for rational electrode de-
sign are based on transport and dimensional
parameters. The optimal size of the storage
particles can be estimated from the chemical
diffusivity and the (dis)charging rate needed

in the application. An important strategy is
to implement two different length scales over
which ions and electrons must diffuse within
the storage phase to reach the ionic (electro-
lyte) and electronic current collector phases.
The optimal values of these two “wiring lengths”
depend on the ionic and electronic conductiv-
ities of the storage material. Nanoscale struc-
tures with different dimensionalities such as
dots, fibers, and sheets are often useful for
various reasons. If the current-collecting phases
exhibit appreciable resistance due to tiny fea-
ture sizes, a hierarchical structure is helpful.
Such considerations help to optimize the mor-
phology and simplify the circuitry. They also
provide a conceptual framework for organiz-
ing the vast literature on nanostructured

battery materials and
for reviewing character-
istic topologies in a sys-
tematic way. To realize
the targeted electrode ar-
chitectures, substantial pro-
gress has been achieved by

adapting various chemical and physical prep-
aration methods. The figure shows lithium-
storing tinparticlesembedded ina2-mm-diameter
carbon fiber preparedbyelectrospinning.Often
a synthesized structuremustdeviate from the gen-
eral design criteria to addressmaterial-specific
stability issues suchas interfacial reactivity, crack
formation, agglomeration, and dendrite growth.
Structural evolution during battery cycling is
being elucidated bynewmethods based on x-ray
absorption, electronmicroscopy, andother non-
destructiveprobes that canprovide inoperando
analysis at a variety of length scales.

OUTLOOK: More powerful multiscale com-
putational approaches are needed to adequately
model the mixed-conducting electrode net-
works. Such numerical treatments will be help-
ful in optimizing electrode structures beyond
the semiquantitative design rules reviewed here.
The further development of synthetic methods
is also vital, so that the desired complex and
hierarchical architectures can be systemat-
ically reduced into practice. Whether or not
even self-organized networks may be realized—as
is the case in bioelectrochemical systems—
remains to be seen. Finally, continued develop-
ment of in operando characterization methods
will surely boost our still-limited understand-
ing of combined ion and electron transport in
the presence of complicating factors such as
mechanical strain, slow interfacial reactions, crys-
tallographic anisotropy, phase transformations,
and morphological instability.▪
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Battery electrodes, integrated electronic circuits, and bioelectrochemical networks
all exhibiting intricate connections and nanoscale charge transport, although for
different reasons.
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BATTERIES

The nanoscale circuitry of
battery electrodes
Changbao Zhu,1* Robert E. Usiskin,1 Yan Yu,1,2 Joachim Maier1†

Developing high-performance, affordable, and durable batteries is one of the decisive
technological tasks of our generation. Here, we review recent progress in understanding
how to optimally arrange the various necessary phases to form the nanoscale structure of
a battery electrode. The discussion begins with design principles for optimizing electrode
kinetics based on the transport parameters and dimensionality of the phases involved.
These principles are then used to review and classify various nanostructured architectures
that have been synthesized. Connections are drawn to the necessary fabrication methods,
and results from in operando experiments are highlighted that give insight into how electrodes
evolve during battery cycling.

T
he task of improving battery electrodes can
be divided into two parts: the development
of new materials and the assembly of these
appropriately sizedmaterials into a suitable
architecture. The issue of materials explo-

ration is described in various reviews (1–3), and
the structural and chemical requirements are
fairly well understood, to the point where com-
putational tools have been developed to scan the
compositional space (4). However, for the equally
important issue of how to design the size, shape,
and arrangement of the different phases in a
composite electrode structure, there are only a
fewsystematic treatments (5,6). This dearthunder-
scores three important points: (i) the understand-
ing of kinetics in such composite systems is not
sufficiently developed; (ii) formanymaterials the
decisive transport parameters are unmeasured
or uncertain; and (iii) the issue is highly complex
and involves multiple phases and length scales.
Despite these challenges, substantial conceptual

and experimental progress has been made over
the past two decades. Here, we review this pro-
gress in four parts. The discussion begins with
principles for optimizing electrode kinetics based
on the transport parameters and dimensionality
of the phases involved. Next, these principles are
used to review and classify some important re-
cently developed nanostructured architectures.
Connections are then drawn to the necessary
fabrication methods, and the final section high-
lights recent results from inoperando experiments
that are providing insight into how the mixed-
conducting network evolves during cycling.
This review focuses on lithium-storing elec-

trodes, but the same concepts apply to electrodes

based on sodium or other elements. For conve-
nience, the electrolyte phase will sometimes be
abbreviated by I (ionic current collector), the
electron-providing phase by E (electronic current
collector), and the lithium-storing active phase
by M (mixed ionic and electronic conductor).
The discussion will revolve mostly around single-
phase storage (e.g., LiCoO2)—the most well-defined
and important storage mechanism—but reference
will also be made to the three other possible mech-
anisms: storage by a phase transformation (e.g.,
in FePO4–LiFePO4), storage by a multiphase con-
version reaction (e.g., Li2S, FeF3), and interfacial
storage (e.g., as typically accompanies conversion
reactions) (7).

Principles of rational network design
The simplest electrode architecture consists of
a single active particle and is shown schemat-
ically in Fig. 1A. If contact resistances are negli-
gible and the I and E phases exhibit sufficiently
high ionic and electronic conductivity, then the
electrode kinetics are determined solely by solid
state transport within the particle. This trans-
port is characterized—notwithstanding implicit
mechanical strain effects—by an intermingling
of electrical migration and chemical diffusion.
The governing classical transport equations es-
sentially involve a local combination of Ohm’s
law and Fick’s law [see, e.g., (8)]. If the geometry
is quasi–one-dimensional (1D), analytical sol-
utions can be derived (9–11), and the situation
can be mapped to an equivalent electrical cir-
cuit (Fig. 1B) (12, 13). Charge carrier interactions
can be included (14). Typically M contacts I and
E only on part of its surface, and in this general
case, the propagation of formally neutral lithium
depends on the ionic and electronic conductivities
(sion and seon) of the active phase M. If seon >>
sion, then lithium diffuses inward from the I/M
interface; if sion >> seon, diffusion proceeds from
the E/M interface; and if sion ~ seon, then lith-
ium diffuses inward from both interfaces simul-
taneously (9). In all these cases, the relaxation
time can be written as td ∼ L2=Dd

Li, where L is the
particle radius or half-thickness and Dd

Li the ef-
fective chemical diffusivity of neutral lithium
(Li+ and e–) in phase M (10). This relaxation time
can also be expressed from an electrical perspec-
tive as td ~ RdC d, where Rd is a transport resist-
ance that depends on the arithmetic mean of the
ionic and electronic resistances (Fig. 1B) and Cd is
a chemical capacitance that depends in ideal cases
on the harmonic mean of the ionic and electronic
carrier concentrations. See (13) for details.

RESEARCH

Zhu et al., Science 358, eaao2808 (2017) 15 December 2017 1 of 8

1Max Planck Institute for Solid State Research, Heisenbergstrasse 1,
70569 Stuttgart, Germany. 2Key Laboratory of Materials for
Energy Conversion, University of Science and Technology of
China, Hefei 230026, Anhui, P.R. China.
*Present address: Department of Materials Science and Engineering,
Sun Yat-Sen University, Guangzhou 510275, Guangdong, P.R. China.
†Corresponding author. Email: weiglein@fkf.mpg.de

Fig. 1. Transport in a battery electrode. (A) Schematic of Li+ and e– diffusion through an ion
conductor I (blue) and an electron conductor E (orange) into a mixed-conducting storage particle M
(green). (B) Equivalent electrical circuit for the contact geometry shown in (A) using a quasi-1D
approximation. (C) Transport into a many-particle network.
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Table 1 lists Dd
Li values obtained in the liter-

ature for selected anodes and cathodes at 25°C.
It is noteworthy that reliable data on transport
properties are rather scarce; nonetheless, it is
clear that the values are fairly low. The only ex-
ception (and so far the upper limit for solid-
state lithium diffusivity at room temperature)
is for transport within a graphene bilayer (15).
As a result, fully lithiating a large, dense particle
takes an impractical amount of time—e.g.,
~14 weeks for a 1- mm-thick sheet with Dd

Li =
10−8 cm2/s. Apart from a few exceptions, chemical
diffusion is expected to be no higher in sodium-
storing materials and substantially slower in
magnesium-storing materials. Silver chalcoge-
nides allow for fast chemical diffusion of Ag (16),
but they are not serious candidates for battery
applications. In short, architectures using a
single dense particle are only practical in ap-
plications requiring very low capacity or power
(e.g., thin-film batteries for miniature electronic
devices).
For all other applications, the common strat-

egy is to break up the large, dense monolith into
many smaller particles (Fig. 1C). Owing to the
quadratic dependence of tdon L, the effect of
reducing L can be immense: A reduction from
1 mm to 10 nm corresponds to a reduction of stor-
age time by 10 orders of magnitude. A striking
example is rutile TiO2, which was long assumed
to be unable to host Li, but downsizing to 10 nm
showed that this apparent behavior was a kinetic
artifact, and that in fact, the thermodynamic
storage capacity of rutile TiO2 is comparable to
anatase TiO2 (17). Indeed, at first glance, down-
sizingmay seem sufficient in all cases except for
extremely low Dd values (<10−18 cm2/s), where
the necessary particle size becomes unrealistic
(< 1Å for a charging time of 1 hour). Yet a
new problem arises: The particle volume scales
with L3, so as L enters the nanoscale, the num-
ber of particles needed to maintain the same ca-
pacity becomes enormous. In the above example
of size reduction from 1 mm to 10 nm, the num-
ber of particles increases by a factor of 1015, and
all of themmust be efficiently suppliedwith ions
and electrons to take advantage of the size effect
on transport time.Hence, thedifficulty of providing
a mixed conductor with high Dd is shifted to the
difficulty of constructing a percolating, effectively
mixed-conducting network.
Because downsizing the storage particles can

introduce a multitude of other problems (dis-
cussed more systematically below), a natural
strategy is to aim for the largest particle size
that allows for complete (dis)charging in the
smallest time (fastest rate) needed in the desired
application. Often, battery engineers use the term
“C rate,” defined such that at a C rate of “n,” the
battery can be fully (dis)charged in 1/n hours. We
will refer to the smallest needed (dis)charge
time (which is approximately the reciprocal of
the fastest needed C rate) as t*. The corres-
ponding particle radius or half-thickness L* can
be written as:

L∗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

aDdt∗
p

ð1Þ

The constant a is hardly influenced by mate-
rials parameters to a first approximation, but it
does depend on geometry and charging mode—i.e.,
whether the current or voltage is controlled.
For example, when filling a platelet-shaped par-
ticle supplied with both ions and electrons over
the entire surface to 99% of its theoretical ca-
pacity, a equals 0.03 under constant current (18)
and 0.56 under constant voltage (10); for a spheri-
cal particle, the corresponding values are 0.15
and 2.40. Considering Fig. 1C, we can—for the
simplified situation considered so far—formulate
the following “wiring rules” for designing the
network: The I and E phases should be con-
tinuous and percolating, whereas percolation of
M is not necessary. The M particles should have
a half-thickness of approximately L*. In other
words, the active phase should be embedded in
a bicontinuous network that is effectively mixed-
conducting (continuous for I and E) but hetero-
geneous on the order of L* (19).
In electrodes of practical importance, the

transport geometry is higher dimensional and
more complicated. In particular, the two distances
(“wiring lengths”) that ions and electrons must
diffuse within the active phase to reach the I
and E contact phases are often very different,
due to different contact geometry. Indeed, be-
cause sion and seon in the M particle often differ
by orders of magnitude, one would expect that
the optimal values for these distances, L∗ion and
L∗eon , will also be different. (It can be shown
that in typical cases, the optimal wiring lengths
are given byL∗ion∼ L∗=

ffiffiffiffiffiffiffi

teon
p

andL∗eon∼ L∗=
ffiffiffiffiffiffiffi

tion
p

,
where teon = seon / (seon + sion) and tion = 1 – teon
are the electronic and ionic transference numbers).
This strategy of designing the wiring lengths

based on the ionic and electronic conductivities
takes maximum advantage of the transport ca-
pabilities of the particle. Unnecessary nano-
heterogeneity is thereby avoided, whichmitigates
a number of problems that can arise at the
nanoscale. For instance, implementing the same
wiring length for both ions and electrons can
require a larger amount of inactive I and E con-
tact phases, which decrease the gravimetric and
volumetric energy density of the electrode. The
contact phases may also compete with each
other. A direct blocking effect is possible; for
example, coating anM particle with an E phase
will block ions unless the E coating has poro-
sity or some ionic conductivity. The competi-
tion can also be a matter of wetting, either as
a consequence of modified surface tension or
worsened contact geometry [cf. Lotus effect (20)];
for example, introducing graphite into the net-
work could worsen the local wettability of the
active particles by the electrolyte as a conse-
quence of local chemical repulsion or the gen-
erated geometrical intricacy (in terms of area
to be wetted and/or wetting angles). The higher
surface-area-to-volume ratiomay lead to increased
interfacial reactivity [formationof a solid-electrolyte
interphase (SEI)], tendency for agglomeration,
or impurity content. Decreased particle size yields
a different chemical potential of Li and hence a
modified cell potential and increased solubility

(7, 21). Decreased pore sizes may lead to in-
creased concentration polarization in the elec-
trolyte and even to salt precipitation. Finally,
unnecessary reduction of thewiring lengths will
typically increase the synthesis complexity and
cost. In short, one is well advised not to im-
plement wiring lengths below the optimal values
without good reason. A refined wiring rule is
needed: The M particle should be shaped and
contacted by the I and E phases such that the
wiring lengths for ions and electrons are as
close toL∗ion andL

∗
eon as is practically feasible. In

other words, a bicontinuous mixed-conducting
network is desired with different heterogeneity
scales for the ionic and electronic current col-
lecting phases.
Several notes on the applicability of the wiring

rules are warranted. First, the transport rates
(and thus the optimal length scales) can change
during cycling. Grain boundaries can introduce
additional resistances or fast paths for diffusion,
so it is important to include them in the com-
putation of L* (14). Anisotropic transport may
introduce additional complexity (22). Formaterials
that store lithium by a phase transformation,
the optimal lengths will depend in part on the
properties of the new phase. The same is true
for storage by a conversion reaction, and often
the conversion products exhibit such slow trans-
port that the necessary wiring lengths become
tiny. On the other hand, conversion creates a
high density of interfaces that can boost storage.
See (23) for further discussion of this point. The
contacts with the E and I phases may not be
ideal; lower L* values must be invoked in less
ideal cases such as point contacts [cf. (24)]. In the
extreme case where surface exchange is rate-
limiting instead of bulk diffusion, Eq. 1 must be
replaced by a linear relation of L* versus t* and
Dd replaced by a surface rate constant.
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Table 1. Effective chemical diffusivity of
neutral lithium in various materials at
25°C. Values shown are estimates.

Dd
Li / cm2 s−1 Source

Cathode materials
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

LiFePO4 10−13 (98)*
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

LiMn2O4 10−11 to 10−9 (99)
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

LiCoO2 10−10 to 10−8 (99)
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

LiNi0.5Mn1.5O4 10−9 (100)
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

LiNi0.8Co0.2O2 10−8 (101)
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Anode materials
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

LixWO3 film 10−12 to 10−11 (102)
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

LixSnSb 10−12 to 10−10 (103)
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

LixC6 10−12 to 10−7 (104)
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Li2MoO3, Li4Mo5O12 10−10 to 10−8 (105)
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

LixSn 10−8 to 10−7 (106)
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

Bilayer graphene 10−5 to 10−4 (15)
. .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ...

*Value shown for LiFePO4 is estimated from a
sample with antisite defects blocking the fast
b-direction channels. Samples with unblocked
channels may exhibit higher Dd

Li.
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Although the conductivities of the I and E
phases are typically high, transport in those net-
works can nevertheless be an additional limit-
ing factor if the design requires thin features
that extend over substantial distances. In such
cases, a hierarchical structure becomes useful.
For larger L∗ionor L

∗
eonvalues and sufficient con-

ductivity, the electroactive particles can assist
in the percolation of the I or E networks as
either a connector in series or an additional cur-
rent path in parallel. [For an example of a tri-
continuous network, see (25)]. An important
special case is faced ifL∗ion or L

∗
eon is larger than

the overall electrode size; then the I or E phase
is not needed at all, leading to an enormous
simplification of the architecture.
Before discussing and reviewing electrode ar-

chitectures from the literature, it is useful to
address the impact of dimensionality in terms of
wiring length, percolation, and volumetric den-
sity. For a 3D monolith, the latter two param-
eters are trivially perfect, but diffusion is sluggish
if all three dimensions are macroscopic. For that

reason, it is essentially the I and E phases outside
the electrode compartments that are 3D objects.
If one parameter is already nanoscopic, diffu-
sion is much quicker. Rapid diffusion is partic-
ularly pronounced for nanoparticles (“0D” objects),
so they are excellent candidates for electroactive
phases with low Dd. The poor connectivity of 0D
objects is not problematic here, because perco-
lation of the storage phase is not needed. One-
dimensional objects have the advantage that for
mechanical reasons the macroscopic length can
often be substantial, and hence needle-like struc-
tures are rather easy to obtain in many cases. As
the percolation threshold for rigid rodlike objects
decreases with increasing aspect ratio (26), 1D
objects are well suited as electronic current col-
lectors. The applicability of 2D objects (i.e., sheets)
depends verymuch on the arrangement, the mech-
anical properties, and the application. For thin-
film batteries, they can serve as E, I, and M
phases; in nanostructured batteries, graphene
envelopes can serve as efficient and volume-saving
current collectors. These remarks on dimension-

ality are greatly simplified and deserve refinement,
in particular when porous and hierarchical struc-
tures are involved.

Archetypal architectures

The parametersL∗eon andL
∗
ion refer to the optimal

length scales over which ions and electrons must
diffuse within the active phase to reach the con-
tact phases. A simple case is realized if the active
phase is a very good electronic conductor such as
ametal or carbon, so thatL∗eon ≫ L∗ion. Then the I
network must contact the electroactive mass on
a fine scale, whereas the E phase can be made
much coarser or completely dispensed with in
the electrode architecture. Figure 2A shows the
situation both schematically and for the prac-
tical example of a high-performance hierarchi-
cal porous carbon monolith (27). The hierarchical
pore size distribution allows the liquid electrolyte
to penetrate and thus the ions to quickly reach the
electroactive particles on a mesoporous length
scale, and because of the high electronic conduc-
tivity of the M phase, admixing an additional
electronic current collector is not necessary.
The situation where L∗eon>L

∗
ion is shown in

Fig. 2B. Both electron- and ion-collecting phases
must be included, but the electron-collecting
network can be much coarser. In the example
shown, the electroactive material is the predo-
minantly electron-conducting composite Li2MnO3:
LiNi0.5Mn0.5O2 (28). It suffices to contact each
~10-mm agglomerate with the carbon network
(left micrograph), whereas more intricate sub-
100-nm pores are needed to allow the electro-
lyte to penetrate (right micrograph).
Figure 2C refers to the case where sion and

seon (and hence L∗ion and L∗eon) are comparable.
The example shown is LiMn2O4 (29); here, the
particles are contacted by carbon and liquid elec-
trolyte on the same ~20-nm-length scale.
Figure 2D addresses the situation in which

L∗ionis substantially larger than L∗eon but still
smaller than the overall electrode size. Such
a case is met in the sodium storage material
Na3V2(PO4)3, which takes the NASICON struc-
ture and hence is a fairly good Na+ conductor.
As demonstrated in (30), it suffices to coat the
Na3V2(PO4)3 particles with polymer electrolyte
on a ~1-mm scale (Fig. 2D, left micrograph) rather
than penetrating to the ~10-nm scale at which
the carbon coating is observed (right micrograph).
The extreme case of an electroactive phasewith

much higher ionic than electronic conductivity
is shown in Fig. 2E. The example refers to the
superionic conductor Li10GeP2S12 (31), a solid
electrolyte with Li+ conductivity of ~10−2 S/cm.
This phase does not allow for a perceptible solu-
bility of lithium owing to the high energy of
electronic defects, so the electroactivity relies on
a conversion reaction. The conversion products
exhibit much slower ion transport, and thus the
rate capability ismodest. Nevertheless, the exam-
ple is pertinent because it illustrates a case inwhich
the only added phase is an electron conductor.
In many cases, one must deviate from the

otherwise optimal wiring lengths to solve specific
problems that arise in practice. One common
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Fig. 2. Strategies for connecting a network of storage particles. A schematic and a practical
example are shown for each case. (A) L∗eon ≫ L∗ion, porous C monolith anode (27). (B) L∗eon > L∗ion,
Li2MnO3 – LiNi0.5Mn0.5O2 – C cathode (28). (C) L∗eon ≈ L∗ion, LiMn2O4 – C cathode (29). (D) L∗eon < L∗ion,
Na3V2(PO4)3 – C sodium cathode (30). (E) L∗eon ≪ L∗ion, Li10GeP2S12 – C electrode (displayed in
green-red false color) (31). Micrographs are reproduced with permission from the indicated sources.
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problem is morphological instability due to
cracking of the storage phase. For example, high-
capacity metals such as Sn would ideally be
implemented as shown in Fig. 2A to take advan-
tage of the high electronic conductivity. However,
the severe volume change upon lithiation typically
causes cracking, pulverization, and loss of con-
nectivity. A better solution is then to begin with
small, isolated active particles admixed with a
percolating electron-collecting phase, as in Fig. 2C.
An intended morphology may also be unstable
due to agglomeration effects during synthesis
or operation. For instance, the primary benefit
of adding a carbon coating to LiFePO4 particles
is typically inhibited agglomeration rather than
a smaller electronic wiring length (32).
Additional examples characterized by a variety

of dimensionalities, percolation schemes, and
storage mechanisms for the M and E phases are
shown in Fig. 3. For instance, a very effective
mixed-conducting network based on anatase TiO2

is shown in Fig. 3A (33); it uses a hierarchical
approach. On a 100-nm scale, the TiO2 aggregates
are contacted by both carbon and electrolyte-
filled pores. On a 3-nm scale within the agglo-
merates, individual particles are contacted by
both electron-conducting RuOx and electrolyte-
filled mesopores. The resulting structure yields
substantially higher capacities than 5-nm ana-
tase particles at ≥10C charging rates, whereas
at lower rates the capacities are comparable. A
similar hierarchical design was used for LiFePO4

in (34).

An elegant structure that buffers volume
changes while providing reasonably good pack-
ing is the “yolk-shell” solution for Sn shown in
Fig. 3B (35). Such a structure has also been im-
plemented for Si (36). In both these examples,
additional carbon is used to electronically inter-
connect the shells. Hollow concentric tubes may
be even better in the sense that they can acco-
mmodate the volume expansion without loss
of percolation, such that additional carbon may
not be necessary (37). There is also evidence that
SEI growth can be suppressed by a concentric
arrangement that shields a susceptible phase
from direct contact with the electrolyte (38). To
maintain good electronic percolation, graphene
can be favorably used (Fig. 3, C and D) (39, 40).
An example of implementing a conversion re-
action that demands short wiring lengths for
both ions and electrons is shown in Fig. 3E.
Here, 1D copper pillars are coated with Fe3O4

(41), which converts upon lithiation to Li2O and
Fe. An even more pronounced reaction confine-
ment is achieved by the architecture in Fig. 3F.
In this case MoS2 “nanodots” are embedded with
fairly high volume fraction in nanoscale carbon
fibers (42). These nanodots are single-molecular
in one dimension (0.4 nm) and less than 4 nm in
the other dimensions. Consequently, the reaction
products are confined to a volume less than 10 nm3,
and the conversion is extraordinarily reversible.
Size effects also reduce the voltage versus Li by
a few hundred mV, which is beneficial for the
role of this structure as a negative electrode.

In Fig. 3G, we highlight a final example that
shows how the above considerations can be
brought together to yield an architecture with
very fast kinetics. Here, 250-nm particles of Sn
are embedded in 2-mm carbon microtubes soaked
in a liquid electrolyte (43). As in the MoS2 ex-
ample, the resulting “(0D–M ⊂ 1D–E) @ 3D−I”
(19) structure illustrates the favorable use of
different dimensionalities, and it approaches
an optimized architecture that both complies
with the general wiring rules and favorably ad-
dresses several specific problems. A list of the
resulting advantages is instructive: (i) short dif-
fusion pathways are achieved for both ions and
electrons (the problem of cracking is mitigated
by making the wiring length for electrons far
smaller than the otherwise optimal value for
Sn); (ii) the embedded configuration helps to
maintain contact with the carbon during lithi-
ation (further addressing the effects of volume
expansion and cracking); (iii) both the electron
collector (carbon) and ion collector (electrolyte)
phases achieve good percolation, in part because
the 1D fibers interweave during synthesis; (iv)
the active particles are isolated from each other,
with the consequence that Ostwald ripening does
not take place (as the metal ions are not mobile
within the carbon); (v) the embedded particles
are partly shielded from direct contact with the
electrolyte, so SEI formation is expected to occur
primarily on the carbon/electrolyte interface;
(vi) such structures could also be well suited for use
with solid electrolytes, because the fiber porosity
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Fig. 3. Electrode architectures with various dimensionalities. An
electron micrograph or a schematic is shown for each. (A) Hierarchical
network of TiO2, carbon, and RuO2 (33). (B) Sn particles inside carbon
shells (35). (C) Carbon-coated Li2S nanoparticles on graphene (39).

(D) MoS2 nanosheets mixed with graphene flakes (40). (E) Fe3O4-coated
Cu nanowires (41). (F) Single-layer MoS2 nanodots embedded in carbon
nanowires (42); (G) Sn particles embedded in porous carbon fibers (43).
Micrographs are reproduced with permission from the indicated sources.
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should allow volume expansion to proceed in-
ward, thus minimizing expansion effects at the
carbon fiber/electrolyte interface; and (vii) the
volume and mass fraction required for carbon
are not totally lost in terms of storage; although
primarily acting as a current collector, carbon is
also electroactive for storage at low potentials.
Space constraints prevent a full review (5, 6, 44)

of the numerous outstanding architectures that
have been fabricated in recent years, in particular
those that make favorable use of 0D (45), 1D
(46–49), 2D (50–54), or 3D (55–61) dimensionality
for the storage material.

Synthesis of the nanoscale architecture

Unlike integrated circuits or biological networks,
intricate battery electrodes cannot (yet) rely on
lithography or self-organization; other tailored,
typically self-assembling approaches are needed.
Detailed synthetic strategies have been reviewed
elsewhere (6), but it is worth mentioning a few
points. Broadly speaking, the strategies may be
divided into the categories shown in Table 2.
Solid-state synthesis is not the best method to
realize a refined nanocircuitry, but it can be im-
plemented at large scale and thus has had an
enormous impact on the battery industry. Liquid-
phase approaches such as (hydro)solvothermal
synthesis (62) and template methods (63) are
more fruitful for preparing nanostructures, and
often the size and shape can be tuned by varying
the precursors, surfactants, templates, and pro-
cessing parameters.

Although there is no 1:1 correlation between
synthesis method and network architecture,
there are connections between the various syn-
thesis methods and the resulting dimension-
alities. For instance, exfoliation methods are
excellent for preparing single-layer or multilayer
2D sheets of compounds with a layered crystal
structure (64). Electrospinning is a widely used
and effective technique for fabricating nano-
wires, micron-scale tubes, and even concentric
1D structures (42, 43, 65, 66). Electrospray de-
position is a related method for synthesizing
porous 3D structures; it can achieve the smallest
droplet sizes of all spray techniques. Both elec-
trospinning and electrospraying can be performed
at ambient pressure, and the resulting electro-
des may need no added binder (25, 37, 67, 68).
Vapor deposition methods are generally restricted
to thin-film applications, but barrier coatings are
also being explored. One such method, atomic
layer deposition, has the ability to grow a con-
formal coating with atomic accuracy on virtually
any structure, regardless of intricacy and aspect
ratio (69, 70).

In operando characterization

In operando measurements are invaluable for
understanding changes in the transport param-
eters or topology during cycling, as these mea-
surements offer nondestructive, real-time, and
nonequilibrium insights into the (dis)charging
process, while avoiding the possible contamina-
tion associated with disassembling a battery for

ex situ measurements (71, 72). A large number
of techniques have been successfully implemented
during battery cycling (Fig. 4A) (73–80) to provide
time-dependent information about electrochemical,
chemical, and mechanical changes in electro-
des. These changes may include one or more of
the following: phase transformations; interfacial
reactivity that creates contact resistances; for-
mation and motion of point and line defects;
expansion-induced mechanical stresses; crack
formation and the associated loss of connec-
tivity; gas evolution; agglomeration; and dendrite
growth.
In terms of materials chemistry, one master

example is the investigation of LixFePO4, a
model system for studying lithium storage by
a phase transformation. The formation of a me-
tastable solid solution in sub-200-nm LixFePO4

particles when cycled at a sufficiently fast rate
has now been observed in operando by x-ray
diffraction (XRD) (81–83), scanning transmission
x-ray microscopy (STXM) (84), and transmission
electron microscopy (TEM) (85). The properties
of such a phase may be difficult to capture by ex
situ experiments, but using in operando STXM,
it is even possible to measure the local surface
exchange current in the metastable state (84).
Intermediate phases, valence changes, and the
associated diffusion behavior during lithiation
of Si, VS4, Na3V2(PO4)2F3, Nb2O5, and other com-
pounds have been probed by nuclear magnetic
resonance (NMR) (86). The rate and pathway
of diffusion may also be influenced by phase trans-
formation dynamics. Bragg coherent diffraction
imaging (BCDI) was used to map atomic-scale
strains and dislocation dynamics during cycling
of LiNi0.5Mn1.5O4, and the results suggested that
dislocations may act as nucleation sites for the
phase transformation (87).
For monitoring phase topology and architec-

ture changes during cycling, x-ray techniques
are particularly versatile, because they can pro-
vide 2D and even 3D information at length scales
from nm to mm. For example, STXM has de-
monstrated that phase boundary propagation
in LiFePO4 is strongly influenced by mechanical
strain effects. Filaments of the transformed (FePO4)
phase were observed, and eventually crack for-
mation occurred between the filaments (88).
The filament spacing was ~200 nm, strikingly
similar to the particle size of LiFePO4 typically
used commercially. STXM results have also shown
that the fraction of particles undergoing (de)-
lithiation at any given instant during cycling can
be as low as 2 to 10% (89). This low fraction is
attributed not to differences in wiring of the I
and E phases but rather to an energy barrier
in the phase transformation that favors particle-
by-particle lithiation at low charging rates. Crack
formation can be studied by x-ray tomographic
microscopy. Figure 4C shows the morphology of
a SnO particle investigated with a resolution of
2 mm (90). The conversion of ~30-mm SnO par-
ticles into Li2O and LixSn was observed to ini-
tially proceed in core-shell fashion consistent
with diffusion-limited behavior, but before con-
version was completed, cracks formed at grain
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Fig. 4. In operando techniques in battery research. (A) Overview. Studies of architecture
evolution generally address the categories within the dashed rectangle. (B) Filament-like diffusion
profiles in LiFePO4 (shown here in false color) observed by scanning transmission x-ray microscopy
(88). (C) Core-shell diffusion and crack nucleation seen by x-ray tomographic microscopy of SnO
particles (90). (D) Transmission electron micrograph of Si nanoparticles undergoing lithiation while
embedded in carbon nanotubes (95). (E) Scanning electron micrograph of the diffusion front in a
V2O5 nanowire (96). Images (B) to (E) are reproduced with permission from the indicated sources.
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boundaries that were present preferentially in
(001) planes, leading to electrolyte penetration
in the cracks, distortion of the core-shell beha-
vior, and particle breakup. These results pro-
vide further evidence that for reversible storage
by a phase transformation or a conversion reac-
tion, downsizing to the nanoscale may be neces-
sary not just to compensate for slow diffusivity
but also to avoid deleterious cracking. Tomog-
raphy with hard x-rays can also nondestructively
visualize the phase distribution on a mm or mm
scale. For example, the gas bubbles that are
generated by electrolyte decomposition during
cycling can be mapped in 3D, thus providing
spatial information about SEI formation and
pressure buildup (91). Nonuniformities resulting
from the fabrication can also be identified; for
example, smaller particles may pack preferen-
tially at the edges of an electrode (92). Tomog-
raphy can be combined with x-ray absorption to
yield a full 3D map of the lithium diffusion front
with a resolution of ~150 nm (93).
Electron microscopy is also yielding impor-

tant insights. A pioneering study using TEM
observed the absence of crack formation while
lithiating a single-crystal SnO2 nanowire, in
stark contrast to the polycrystalline SnO study
described above. Instead, a high concentration
of dislocations formed at the lithiation front,
and the wire underwent considerable plastic
deformation (94). In another TEM study, a con-
finement effect was suggested during the lithi-
ation of Si nanoparticles embedded in carbon
nanotubes (Fig. 4D). The formation of a Li-Si
alloy resulted in pronounced (~180%) volume ex-
pansion, as expected, but crack formation and
crumbling appeared to be reduced by the nano-
tube confinement, thus helping the structure to
remain intact during battery operation (95).
Scanning electron microscopy (SEM) can also
be adapted to monitor morphology variations
such as expansion and fracture during electrode

cycling. For example, lithium propagation in
an individual V2O5 nanowire has been tracked
(Fig. 4E) (96 ).
Interestingly, resonance methods can be used

to monitor dendrite growth during cycling. Spe-
cifically, both 7Li nuclear magnetic resonance
(NMR) (97) and electron paramagnetic resonance
(EPR) (74) can distinguish between smooth de-
position and rough dendrite formation in the
early stages of Li metal plating on an anode. In
the later stages, magnetic resonance imaging
(MRI) can track the growth of Li metal micro-
structures with a spatial resolution of ~100 um
(75). These capabilities could plausibly enable
faster and more detailed evaluation of additives
or architectures intended to control dendrite
growth.

Conclusion

Although the limits of theoretical energy density
based on the available mechanisms and mate-
rials space are in sight, substantial improve-
ments in power density are still possible. Because
solid-state transport in the electroactive masses
is sluggish, nanotechnological solutions are re-
quired. The design principles reviewed above
provide a conceptual framework for tailoring
the complex electrochemical circuitry in princi-
ple, and advanced preparation and in operando
characterization methods are indispensable for
optimizing the electrodes in practice.
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Table 2. Methods for fabricating nanoscale architectures.

Type of synthesis Method Possible dimensionality Advantages

Solid state Ball milling 0D, agglomerates Feasible for large-scale applications
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Liquid phase Hydrothermal 0D, 1D, 2D, 3D porous Controllable for various nanostructures
. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .

Solvothermal 0D, 1D, 2D, 3D porous
. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .

Microemulsion 0D, 1D
. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .

Precipitation 0D, 3D
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Sol-gel 0D, 3D porous
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Template 0D, 1D, 2D, 3D porous
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Spray drying 3D porous Powerful for 3D porous structures
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Field-assisted Electrospinning 1D Powerful for 1D structures
. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ...

Electrospraying 2D, 3D porous Powerful for porous nanostructures
. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ...

Microwave-assisted synthesis 0D, 1D, 2D, 3D porous High reaction rates
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Galvanic replacement synthesis 0D, 1D, 2D, 3D porous Template morphology can be tailored
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Electrodeposition 0D, 2D Effective for coatings and thin films
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ...

Vapor deposition Chemical vapor deposition 0D, 2D
. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ...

Physical vapor deposition 0D, 2D
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Exfoliation Various 2D Powerful for materials with a layered crystal structure
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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architecture more complex. The authors discuss the overall design rules and criteria to guide battery design.
constituents. Making things smaller can improve transport of electrons and ions, but at the cost of making the overall
batteries. In particular, they look at the relations between the kinetics and dimensionality of the different electrode 

 review different electrode architectures for lithium-ionet al.performance can be limited by a number of factors. Zhu 
Although overall battery performance is limited by the electrochemistry of the component materials, the actual
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